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ABSTRACT

This report is concerned with the practical applications
of Statistical Energy Analysis (SEA) to the prediction of
vibration in high speed flight vehicles. The procedures of
estimation, based on the theory presented in Part I, are
presented in Section I of this' Part II of the report. We
describe how energy estimates are used to infer stress, dis-
placement, or other dynamical variables. Obtaining the
-energy estimates is described next, and the SEA parameters -
mode count, loss factor, and coupling loss factor are intro-
duced. A discussion of SEA modeling completes Section I.
Experimental and analytical procedures for evaluating the
SEA parameters are presented in Section II. In Section III,
an example of the use of SEA to predict the vibration of an
equipment shelf in a reentry vehicle is described in some
detail.
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INTRODUCTION

This Part II of the report of Statistical Energy'
Analysis for Designers describes the engineering application
of statistical energy analysis, to the prediction of the
vibration of flight vehicles and their subsystems. The
procedures are based upon the theoretical discussion
presented in Part I of the report, but are intended to be
independent from the theoretical background. Therefore,
if one is willing to accept the basic formulas as presented,
the estimates can be performed without reference to Part I.

Many of the parameters introduced in Section I of
Part II represent information abo c the system that is not
commonly evaluated in vibration analysis in the preliminary
design stage. The quantification of these parameters
either by theoretical or experimental procedures is covered
in Section II.

The emphasis in the prediction methods presented in
Section 1 is on the average value of response, but we have
also included some information regarding the variability or
uncertainty in the response estimate. An understanding of
the potential uncertainty in the response estimate can be
quite important in interpreting departures from the pre-
dicted values of response. A consistent departure from the
prediction of several frequency bands is a signal that some
aspect of the SEA model is inadequate and probably should
be modified, whereas a scatter in the data around the
predicted average that is within the calculated uncertainty
is an indication that the model cannot be improved upon
easily.

Section II of Part II of the report is concerned with
evaluating the SEA parameters; loss factor, mode count,
and coupling loss factor. Methods of evaluating parameters
are empirical, experimental and theoretical. All of these
methods are described for evaluating the parameters. In
practical situations, it may be necessary to use a mix of
procedures to get all the desired values. Mode counts, for
example, tend to be easy to calculate and difficult to
measure, whereas damping is simpler to measure and more
difficult to calculate.

We have tried to preserve an engineering applications -

oriented approach to the formulas and techniques, and in the
notation in which the results are presented. In many cases,
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the formulap 're presented in slightly modified form from
that of the i.ginal source, if the change simplifies the
computation -4uiredwith little sacrifice in accuracy. Also,
for example, we use cyclic frequency (in hertz) rather than
radian frequency since this is the quantity that one tends
to use experimentally. This preference is not faithfully
followed in all instances, but generally we try to adhere
to it.

One cannot cover all cases of interest that will arise
in design work in a report such as this. This is partly be-
cause of space limitation, but also because all the important
cases of interest have not yet been worked out. We have
tried to indicate sufficient sources for additional back-
ground information, so that the reader has access to the
information needed to extend the information in this report
as needed.

In Section III, we give an example of the use of SEA
in the prediction of vibratory response in a high speed
flight vehicle and the transmission of that Vibration to
an internally mounted equipment shelf. As the reader will
note, a combination of models, techniques, and analyses
are required to cover the frequency range and subsystem
behavior. In the final analysis, there is still room for
improvement of the model, but the procedures point the
direction for the improvements and leave it to the designer
whether the next step is worthwile or whether the estimate
"will do" as it stands.

This example should be looked upon as an indication
that hard estimation problems can be solved with reasonable
effort, rather than a formula for success in other estimation
efforts. The various approaches to evaluating mode counts,
injected powers ai i coupling loss factors may be of little
direct value in the next estimation problem that has to be
solved, but a willingness to look at several different models
and to use experiment when a calculation can't resolve an
issue are lessons of great value.

This part of the handbook does not close the door on SEA
developments, but rather opens it up. As SEA becomes more
widely used by designers, the data on parameters, the models
that have been analyzed, and the correlation of predictions
with data will grow. Thus, in using SEA designers are not
only availing themselves of a new tool, but they are con-
tributing directly to the growth in the usefulness of that
tool.
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SECTION I - THE USE OF SEA IN PRELIMINARY DESIGN

CHAPTER 5. RESPONSE ESTIMATION DURING PRELIMINARY DESIGN

In the early stages of design of a high speed flight vehicle,
it is often necessary to develop estimates for vibration amplitudes
and spectra of major sections of the vehicle. This may be to
anti cipate possible fatiguB problems as a result-of the mission
prcfiles and their mix for the aircraft, or to provide data to the
ei iironmental specialists in the development of proper test
specifications. [I]

This requirement for response estimation will usually first
arise during a fairly early stage of the vehicle development. At

this point, only some mission parameters and major sttuctural
geometry may be known, but details of construction, fastening, etc.
may well not be known. Nevertheless, it is necessary that one
make the vibration estimates in the face of this uncertainty and
do it as well as possible in order to avoid overdesign and its
attendant extra expense, or conversely, underdesign and the
potential for malfunction or failure.

It is perhaps worth commenting on three procedures for estimat-
ing response that have been used. They are the Mahaffey-Smith
procedure [2], the Franken method [3], and the Eldred procedure [4].
Of these, the Mahaffey-Smith procedure has been the most widely
used because it is quite simple to apply and provides results in a
form that is directly usable by the engineer. it suffers from a
complete lack of inclusion of acoustical or structural parameters,
meaning that the estimate cannot be improved as more becomes known
about the vehicle.

The Eldred procedure improves on the Mahaffey-Smith method by
incorporating structural damping as a parameter. This is done by
making an analogy with the response of a simple 1 dof system to
noi se excitation as described in Chapter 2 of Part I. We should
note, however, that the damping of different built-up aerospace
structures is not very different so that the inclusion of this
parameter does not greatly strengthen our hand in developing res-
ponse estimates. The Franken method does not include damping, but
does include surface mass density of the structure and its radius
of curvature. We can look therefore for certain changes in res-
ponse as we vary the structure. Thus, although the basis of the
Franken method is empirical, the data normalization used allows its
application to quite a variety of structures.

The major advantages of SEA is that the degree of parameteriza-
tion of the prediction problem can be varied as more structural
and loads information becomes available. Thus, it is possible to
continually refine our response estimates as the design becomes

3



more fixed. An important consequence of this is that we can see
the effect of various design alternatives in changing noise and
vibration levels. When SEA is used, there is no "discontinuity"
between the empirical procedures used in the preliminary phase
and the much more detailed analyses that may be used at later
stages of design.

In Part I of this report, we followed a pedagogical approach
in which the theory and applications of SEA were developed along
a "conventional" path. We began with the model and then worked out
its consequences. In this Section I of Part II, we take a rather
different approach. The SEA procedure is described as a complete
process in Chapter 6. The steps involved are itemized and ex-
plained as an engineering procedure rather than as a conceptual
development as was done in Part I. We first focus on the output
of the procedure - the response estimate. Generally, the SEA
calculation gives results in terms of energy of vibration, which
must then be converted to stress, or some other dynamical vari-
able. We then proceed to determine how that energy estimate was
arrived at. The use of energy estimates to develop estimates for
oth er response variables is discussed in Chapter 7.

The calculation of the energy estimate itself requires use of
the SEA model for energy flow. As discussed in Part I and reviewed
in Chapter 8, this model contains energy storage, loss and transfer
parameters - which are the modal density, loss factor and coupling
los s factor, respectively. In addition, we must know the input
power injected into the structure by the environment. Chapter 8
shows how the energy estimate is developed from knowledge of these
parameters when they are expressed in either analytical or graph-
ical form.

The SEA parameters that are important in determining the energy
for the actual system under design must then be evaluated.
Chapter 9 shows how this is done by using experimental methods,
theoretical predictions and empirical values. Two kinds of coup-
ling factors are discussed: those appropriate for blocked energies,
and those for actual system energies. Modal densities are discussed
in both theoretical and experimental terms. Input and junction
impedances are introduced for the purposes of evaluating coupling
loss factors and input power.

The final chapter of Section I deals with the construction of
system models. This is one of the most important steps in SEA.
The general model configuration is likely to be fairly similar for
various detailed designs of a given system. Thls, a particular
class of high speed vehicles are all likely to have similar system
models, so that once defined, only relatively minor changes to the
model will be necessary.

4



CHAPTER 6. PROCEDURES OF STATISTICAL ENERGY ANALYSIS

6.0 Introduction

In this Chapter, we survey the entire SEA estimation
procedure as an engineering process, as contrasted with the
theoretical approach taken in Part I. The process consists
of (1) model definition, (2) parameter evaluation, (3) cal-
culating energy distributions and (4) response estimation.
In general, it will not be necessary to repeat all parts
of this process for every new situation, but only the latter
parts may have to be revised. For that reason, in
Chapters 3 through 6, we have reversed the order of
presentation, discussing the latter stages of the process
first since they are more directly connected with what the
engineer wants to know and are also the parts of the pro-
cedure that are most likely to change with each new
situation.

In this Chapter, however, we follow the more customary
sequence in which we start with the modeling discussion and
end up with response estimation. We try to indicate as well
as we can just what the real engineering considerations are
at each step. In the later chapters, more detailed dis-
cussion of the procedures will be presented.

6.1 Modeling the System

As an example of a system that we might wish to model,
consider an aircraft and its attached equipment pod shown
in Figure 6.1. Such a system will have its dominant
response determined by "resonant", that is, damping con-
trolled vibration and, hence is a candidate for SEA
prediction. We also assume that whatever nonlinear effects
there are may be neglected for the purposes of estimating
response at this stage.

Modeling this physical system requires that we identify
the following features of energy flow and storage in the
system:

(1) Sources of input power and mode groups (subsystems)
on which they directly act. In the case of
Fig. 6.1, these would be the acoustical noise
field and turbulent boundary layer acting on both
the aircraft and the pod.

5



(2) Groups of "similar" and "significant" modes that
store energy and result in response that affects
the estimates we wish to make. In the case of
Fig. 6.1, we might make a firs, try by grouping
all flexural modes of the aircraft panels to-
gether, and flexural modes of the pod together.
If it turned out later that some group of modes
originally ignored was important, then one would
have to add it to the diagram.

(3) It is automatically assumed that every group of
energy-storing modes will have a finite amount of
damping. Thus, the identification of the dis-
sipation of energy represents no additional task.

(4) The junctions through which appreciable energy
may flow from one mode group to another. In the
case of Fig. 6.1, this is the pair of connecting
spars between the aircraft and the pod. The
energy flow links are usually identifiable by a
direct interface between the energy storage boxes
or mode groups.

When all of the energy storage and power input, dis-
sipation and transfer processes are defined, the SEA modeling
is essentially complete and results in a diagram like that
shown in Fig. 6.1 (but is generally more complicated!). At
this point, the SEA parameters that we need to solve for the
energy values will be evident. In the next section, we
review briefly the procedures by which the parameter
evaluation is made.

6.2 Evaluating the Parameters

The parameters that define the four processes of
paragraph 6.1 are:

(1) the input conductance (for input power),

(2) modal densities (or mode count) to determine the
number of modes in a "box",

(3) the dissipation loss factor that relates energy
stored to power dissipated,

(4) the coupling loss factor that relates differences
of modal energy of subsystems to the power flow.
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In this section, we give a brief overview of the parameter
evaluation process which we shall cover more fully in
Chapter 9.

If the environmental excitation produces a force on a
system, then the parameter governing the input power resulting
from that force is in the form of an input "conductance".
If the load is a prescribed motion (such as the injection of
volume velocity into an acoustical space), then the proper
parameter is an input resistance of the system. These
parameters which collectively are known as "immittance"
functions [5] are known for structural excitation by some
environmental loads, such as shakers, turbulent boundary
layers, sound fields, and separated flows on vehicles. In
any particular situation, however, a measurement or new cal-
culation of the appropriate immittance may be necessary.

Modal densities are known for many of the elements that
make up the systems that interest us. Modal density is
usually written n(f), meaning the average number of modes
that resonate in a 1 Hz band around the frequency f.
Elements for which modal densities are known include flat
plates (isotropic and anisotropic), curved plates,
acoustical spaces, strings and beams. [6] Since modal
densities of combined systems are additive, any sytem that
is composed of these elements also has a known modal
density. Modal densities can be measured by counting
resonances as the excitation frequency is varied, but con-
siderable care is necessary to avoid missing a sizable
number of them in the count.

Care must also be taken to use the proper modal density
for the kinds of modes that are important for the purpose
at hand. For example, in Fig. 6.1 the modes of the air-
craft that contain the most energy and are best coupled to
the turbulence and noise are those of panel flexure. Thus,
even though torsional or in-plane motion modes of the
fuselage may resonate in the frequency range of interest, we
would very likely ignore these non-flexural modes. It turns
out that a 10% error in the mode count is only about 1 dB
uncertainty in the response estimate, so that it is not
necessary to have great precision in the modal density.

The damping of the mode group is expressed in SEA work
by the loss factor. This quantity is the reciprocal of the
electrical engineer's Q or quality factor and is twice the
mechanical engineer's critical damping ratio. Calculation of
the damping from first principles is generally quite un-
reliable so that one usually relies on measurements to predict

7



loss factor as a function of frequency. Typical values for
the loss factor are in the range 0.1 to 0.001.

A damping measurement is usually accurate enough to
determine loss factor to two significant figures, but not
much more than that. Two commonly employed ways of measuring
damping are a free decay of the system, or a measurement of
modal response bandwidth when the excitation is a pure tone.
The bandwidth technique is a bit more accurate when it works,
but it must be done on a mode-by-mode basis, and it fails when
the modal density is high and the modes get too close to each
other along the frequency axis. Occasionally, one can also
measure damping by injecting a known amount of power into the
system and observing the steady-state response.

The transfer of power between mode groups is determined
by the coupling loss factor. This parameter, in turn, is
related to or determined by other parameters that are
probably more familiar to engineers who work with the systems
involved. For example, the coupling loss factor for power
flow between two rooms can be readily related to the trans-
mission loss of the wall, which is a familiar parameter to
workers in building acoustics. Similarly, the coupling loss
factor governing the interaction of a panel and a sound field
may be related to the radiation damping (or mechanical
radiation resistance) of the panel, a quantity that is known
to structural vibration engineers. Thus, although the
coupling loss factor itself is not a well known parameter,
in particular situations it is often relatable to other
parameters that are more familiar. Since these other para-
meters have been calculated or tabulated in many instances,
the coupling loss factor can also be evaluated.

6.3 Solv.inq for the Energy Distribution

The SEA model allows one to calculate the equilibrium
energy of each mode group from a knowledge of the parameters
involved. The simultaneous equations for the energy are
linear, algebraic and the solutions give each energy in
terms of all the input powers to the system and the various
loss and coupling loss factors. Normally, the input power
to each mode group and the parameters such as modal density
and coupling and dissipative loss factors are assumed to be
known. One then solves for the energy values.

It is also possible in principle to use the energy
equilibrium equations to try to evaluate all of the SEA
parameters, and the coupling loss factors in particular.

8



In this instance one tries to control the input power and
to measure the energy equilibrium values as well as possible.
The equations are then solved for the coupling loss factors.This is not a totally satisfactory way of determining these

parameters, however, since the solutions seem to be quite
sensitive to rather small errors in the measured energy
values. Nevertheless, this approach has been used with
limited success in a few situations. [7,8]

The result of the energy calculation is the total energy
of resonant vibration (or oscillation) in a frequency band
Af wide for each "box" of the system. This information is
then used to predict the actual dynamical response that is of
direct interest.

6.4 Evaluating Response from Energy Estimate

In Chapter 7, we will develop the procedures used in
converting the energy found from the calculations just dis-
cussed into useful estimates of vibration, pressure, strain
or some other appropriate response variable. In this section,
we merely summarize the procedure, which has two major
estimation outputs: the mean energy or rms response and,
where appropriate, an estimation interval.

The mean value estimate of energy gives the mean square
acceleration in some frequency band (an octave band, for
example). This mean square response is also a spatial
ave:age, so that it applies to a region of the structure.
For example, an energy estimate might be found fur the air-
craft fuselage to be 10 joules (watt-seconds) in the 1 kHz
octave band. If the total mass of the fuselage were 1000 Kg,
then one estimate of the m.s. velocity in the band would be
10-2 (m/sec)2 and the rms acceleration would be approximately
60 g's. This average result is both a spatial average and
an ensemble average, i.e., it applies to a hypothetical group
of structures, similarly constructed, of which our structure
is a representative sample.

An important modification of this average estimate is to
take account of "response concentration", that is, to
recognize that particular regions of the structure will have
a time mean square response that is greater than the spatial
average. For example, the m.s. pressure near the wall of a
room is twice the space average value. As another example,
the m.s. velocity at the free tip of a beam is just four
times the spatial m.s. velocity of the beam as a whole. For
other boundary conditions on panel type structures, Ungar
and Le- have evaluated several of these "response concentration"
valueF (9].
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Since we admit to variation, we must have a procedure
for making estimates that incorporate this uncertainty in
a useful and realistic way. This is done by forming an
estimation interval. Such an interval is a familiar idea.
It is frequently seen in cases in which vertical bars are
placed on a mean value measurement to either indicate the
range of observed dat. or the mean, plus or minus the
standard deviation. We can be more definitive than this
in our use of estimation intervals in Chapter 7. We cal-
culate the range of values of response that are expected
to "capture" the observations, say 95% of the time. This
form of estimate is of value when applying SEA to
reliability analyses since the probability of levels
occurring that exceed a particular value may be quite
important.

The estimation intervals are derived from a calculation
of the standard deviation of the m.s. response. We have
explained in Part I that the theory in support of this
calculation is not so well established as it is for the
mean value theory. Nevertheless, the importance of this
aspect of estimation is great enough that we must use the
limited results that are available to calculate the
standard deviation for the purposes of interval estimation.

The result of the estimation then is to say that, for
example, the rms value of fuselage acceleration in the
1 kHz band is 60 g's. In addition, if we bracket this
mean value with a range from 20 to 200 g's (± 10 dB), we
would expect to have 95% of all observations of response
fall within this intcrval. Such an estimate can then be
used to compute fatigue accumulation or some other response
related failure rate.

10
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CHAPTER 7 ESTIMATION OF DYNAMICAL RESPONSE

7.0 Introduction

This chapter is concerned with the estimation of the
dynamical response of a system in terms of such variables
as stress, acceleration, pressure, etc. The starting point
is the knowledge of system vibrational energy, typically
in the standard frequency bands. The goal is a prediction
of mean square response for the same frequency bands. We
include uncertainty in the estimate by using estimation
intervals, and response concentration effects due to
boundaries or impedance variations in the system.

The energy is assumed to be known, it will have been
found previously according to the methods of Chapter 8.
However, the discussion of this chapter is sufficient in
itself to allow one to make many useful conversions from
one response variable to another. For example, the
average energy of vibration of a system may be determined
by measurements of acceleration. The methods of this
chapter allow one to convert this acceleration measurement
to an estimate of stress. Further, one could estimate the
increase in variance due to restricting the bandwidth of
measurement. Much of the data manipulation that is useful
in particular instances has its basis in the discussions
of this chapter, quite apart from their broader usefulness
in SEA.

7.1 Representations of the Energy Estimate

In engineering usage, the "power spectral density" (psd)
of the energy of vibration may be denoted bye (f), and the
energy of vibration associated with a frequency band Af in
the range f < f < f2 would simply be

f 2

E =(f) df. (7.1.1)

This integration is shown graphically as the hatched area
in Fig. 7.1. If f2-fj=l Hz, then the integral is plotted
as the energy psd, which is e(f) in Fig. 7.1. Other
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"constant frequency bandwidth" presentations of data in aero-space applications are typically 10 Hz or 50 Hz.

It is also common practice to present data or the
results of calculations in terms of "constant percentage
bandwidths". In this instance, the nominal "center
frequency" of the band is the geometric mean of the limits:

f

and the bandwidth Af=f 2-fl is always a constant fraction r
of the center frequency: Af=rfc. If r=i//2, then f2=2fl and
we have "octave bands". If r=0.26, then the bands are
called "1/3 octave bands". A table of the center frequencies
for the standardized octave and 1/3 octave bands is shown
in Fig. 7.2.

The mks unit for energy is the joule (or watt-second)
which is the amount of work involved when a force of 1
newton acts along a distance of 1 meter. The unit for the
psd of energy e(f) is joule-sec, since the unit of frequency
is cycles per second or hertz (Hz).* Since the energy in a
band EAf is the integration of e (f) over frequency, the band
energy unit is also the joule.

We may also express the energy E as a "level" defined
by

L 10 log E/E dB (7.1.2)
E ref'

The standard reference for energy is 1012 joules. A band
energy of 0.1 joule, therefore, wou.Ld correspond to a band
energy level of 110 dB, normally written

*Clarity of presentation would insist that there is no
difference between the unit "Hz" and (second)-', but
engineering usage of Hz is widespread.
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-12
LE = 110 dB re 10 joules

In Fig. 7.3, we show how the octave and 1/3 octave band
levels of energy might be graphed in a typical situation.
The 1/3 octave band levels will generally be of the order of
5 dB lower than the octave band levels since the response of
three adjacent 1/3 octave bands must be combined to account
for the response in a single octave band. Also, note that
only the band values have significance, the connecting lines
between the points are only an aid to seeing the overall
trend of the data as a function of frequency.

7.2 Conversion From Energy to Other Variables

The relation between vibratory energy and the space-
time mean square velocity of the structure or sound field
is

E = M <v2> = M V 2  (7.2.1)
rms

where M is the structural mass in kilograms.

By taking 10 log of this expression, we can express
this as a relation between energy levels and velocity levels,

LE = i0 log E/Eref = 10 log M + Lv + 120 (7.2.2)

where Lv E 20 log Vrms/Vref, and vref = 1 m/sec. Thus, for
example if a structure has a mass of 10 kg, and the band
level of energy is 97 dB, (the 125 Hz octave band level of
Fig. 7.3) then the velocity level is

1v = 97 - 10 log 10 - 120=- 3 dB re 1 m/sec
(7.2.3)
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We can develop a velocity spectrum for this structure
using Eq. (7.2.2). This spectrum is presented in Fig. 7.4
and corresponds to the octave band spectrum of energy shown
in Fig. 7.3. Note that a velocity level of -40 dB corresponds
to an rms velocity of 1 cm/sec.

The displacement or acceleration spectra are readily
derived from the velocity spectrum, simply by noting that
for each band having a center frequency f,

<a2 > = 4 7f 2  <v2 >; <d2 > = <v2>/4n 2 f2  (7.2.4)

If we define

La = 20 log arms /aref

(7.2.5)

Ld = 20 log drms /dref

in which are f = 10 m/sec 2  (=lg) and dre f = 1 m, then

L = 10 log 4W2 + 20 log f + 20 log v - 20 log 10

=L v + 20 log f - 4, dB re 1 g

and

L = L - 20 log f -16, dB re 1 m.
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As an example, these are also graphed in Fig. 7.4 for the
velocity spectrum shown there. Of course, the relative nu-
merical values of the band levels Zepend on the reference
value chosen, but the comparative shapes of the spectra are
not. Note that the displacement spectra tend to be large
at low frequencies and the acceleration spectra are higher at
high frequencies. A conversion nomograph between levels is
shown in Fig. 7.5.

The mean square velocity we have been dealing with has
been called the "kinetic velocity", [10] a velocity defined
in terms of the kinetic energy of the system. If the
structure is fairly homogeneous (beams, cylinders, plates
and sound fields meet this requirement), the kinetic velocity
is also equal to the space-time mean square velocity of the
system.

In addition, these systems also allow us to use a simple
relationship between the mean square velocity and the strain
in the structure. One can readily show that for a variety
of mechanical motions (flexure, torsion, compression, etc.)
the mean square strain <£2> is simply related to the kinetic
velocity. [11, 12]

<62> = K <v2 >/c2 (7.2.6)

in which the constant K depends on the type of motion and
system geometry but varies over a small range near unity.
For estimation purposes we can set K = 1.

_-6

A useful reference strain is cref=1 0  , or "1 micro-
strain". Defining the strain level as

L= 10 log < 2>/Cef2

one has

Le = Lv - 20 log c + 120 -6v Z [dB rel 1 ,or

1 microstrain]
= LE - 10 log M - 20 log c£ (7.2.7)
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Thus, if Lv = - 30 dB re l/msec and if c£ = 5000 m/sec,
L= - 30 - 74 + 120 or 16 dB re 1 microstrain, corresponding
to an rms strain of 6.5 x 10 

.

We can also relate the velocity to stress T by noting
that the strain times stiffness modulus is stress. For most
structures the appropriate stiffness is the Young's modulus
Yo,

<T 2 > - y 2 <C2> (7 7.8)0

The stress level is defined as

2 2

LT E 10 log <T >/Tref. (7.2.9)

Any convenient reference stress Te can be used. If we
use Tref = 106 newtons/meter 2 thefef

L = 20 log Y - 120 + L

= L + 20 log Y - 20 log c
v o

= Lv + 20 log pck (7.2.10)

using Yo = pc2 where p is the density and c£ is the
longitudinal wave speed. Thus, the form of the velocity
spectrum also determines the form of the strain and stress
spectra. In Table 7.1, we summarize the relations between
the variables discussed and the level defined in the pre-
ceding paragraphs. These relations as a group allow us to
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generate average (meaning space-time square) response of
the system if the average energy of vibration or any of
the other variables are known.

7.3 Response Concentration Factors

The average response values are useful as a first step
in estimation of vehicle vibration, but there are at least
two reasons that we have to modify the average estimates
for engineering purposes. The first reason is that of
"response concentration", which is well known in the case
of the stress concentration factors commonly used in
structural design. Such response concentrations are tabulated
and available for various common configurations. [13]

The second kind of concentration factor or effect is
the local maximum of response due to coherence effects
between modes which many modes are excited simultaneously.
This coherence may be spatial or temporal. The variation of
and peaks in local rms response due to coherence between
modes was discussed in Chapter 4 (of Part I). In this chapter,
we merely use some of those formulas to estimate extreme
values of response that result.

Modal Stress Concentration

We can estimate the spatial mean square of stress for
example, according to Eq. (7.2.8) and its antecedents. We
can also estimate the effect of edge fixation on the stress
of the boundary of a plate by methods reported by Ungar and
Lee [9]. These authors use the "dynamic edge effect" method
of Bolotin to calculate stresses in situations for which
there are no exact solutions to the thin-plate equations.

We imagine a modal vibration pattern like that sketched
in Fig. 7.6. The displacement w near the boundary defined
by x2 = constant is written

w(xlx 2 )=sin k1x1 [sin k2x2 Bl cos k2x2+B2 e-k2

(7.3.1)
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where

2 2

and

kl2+k 2 = W/C2 k

where

cb =

is the free bending wave speed.

The maximum response of a single 2-dimensional mode
in the "interior" is

<v2  >= 4<v 2> (7.3.2)max

since the mode shape function is

m = 2 sinkmlXI sinkm2X2  (7.3.3)

Thus, we have a concentration factor of 2 built into a single
mode response. The major interest in the edge effect is
whether the constraint due to the edge causes stress con-
centration there that are greater than the interior values.

The analysis by Ungar and Lee [91 is rather detailed and
lengthy, but they find that the ratio R of edge to
interior stress can be simply stated in two important cases

(A) "clamped-like" edges
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4aG G[2at G(3- H J1

M{[4a rG(atG-H)+J-2G 2]2 + A2} 7.3r.4

(B) "free-like" edges

2G (V+02) (2a rH+G) - vG(4a ra G2+ j)

M = L\2+[4rG(_GH)+j 2 ] 2 } ; arfA [ a ~ atG - )(7.3.5) I

In these expressions

a r = Kr/2D kp G

at= Kt/2Dk' H =t p

= k1/k2  J = 1 + V 2

= J H - 4a tG 2 (G+a rH)

k2 +k2=G 2 k2  M = max [J,v + $2]
p 1 2 y

The elastic supports are defined by a rotational stiffness Kr
and a translational stiffness Kt per unit length. The plate
has a Poisson's ratio v and a bending rigidity D = PsK 2C9

The surfaces R = 1 for these two conditions are shown in
Figs. 7.7 and 7.8 which was adapted from the report by Ungar
and Lee [9]. The region within the surface represents con-
ditions in the parameter space for which the stresses along
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the edge are greater than at interior locations. The actual
stress ratio for any situation may, of course, be found from
Eqs. (7.3, 7.4, and 7.5). For example, if we find the stress
ratio due to a "normally incident" (8=0) mode on the x2=0 edge
(shown in Fig. 7.6) when the edge is clamped (ar,at-'), we
find R=2. Thus, the simple clamped edge produces a stress con-
centration factor of 2 above the peak stresses that occur in
the interior of the plate due to the normal mode shape. This
same stress concentration also occurs for "grazing modes"
($ -) in which the waves are travelling parallel to the edge of
the panel.

Multi-Modal Stress Concentration. In Chapter 4 (of Part I) we
discussed the effect of coherence between modes in multi-modal
response. We found that it was possible to obtain that we
called "statistical response concentrations" of significant
value when many modes are coherently excited. Such a situation
can arise when structures are excited by a pure tone at a
frequency well above the lowest panel resonances. The ex-
pression for the response concentration for this situation is
[see Eq. (4.4.12)]

w

Wmaxw = max
rms

which is 2/N for 2-dimensional modes.

As an example of the application of Eq. (7.3.6), con-
sider the aircraft shown in Fig. 6.1 excited by the pure tone
from a bypass engine fan at 2.5 kHz. Assume the structural
loss factor is 10- 2 , so that an equivalent modal bandwidth
is approximately 40 Hz. If the fuselage has an area of 50 m2
and an average thickness of 2 nm, the average spacing between
modes is Sf = 0.12 Hz. Thus, at 500 modes will be excited
by this tone and the statistical concentration factor is

Rstat = 2/500 a 45, (pure tone) (7.3.7)

quite a large concentration factor. Detailed analysis shows
that this concentration has a nearly unity probability of
occurring, but that its position will shift depending on the
frequency of the excitation. Thus, if the tone frequency
varies at all, this concentration point will wander over the
structure.
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When the system excitation is broad band, the
statistical response concentration is almost never important.
The response concentration in the case of excitation by a band
Af is given by

( I nf) 2

Rstat = [jf if  max + (1- j (Af>nf)
(7.3.8)

Applying this to our example, we get Rstat = 10 when Af=600 Hz
(the bandwidth of the 2.5 kHz third octave band). Thus, the
"statistical response concentration" is a function of the band-
width of the vibration, decreasing as the noise bandwidth in-
creases.

We have shown how we can estimate extreme values of
response for single and multi-modal response situations. Such
extreme values are of particular interest when "exceedance"
type failures, such as fracture, plastic deformation, or
collisions are considered. We now turn to procedures frr
forming estimation intervals which are useful in amplitude
related damage estimates.

7.4 Variance and Estimation Intervals

Variance is a measure of the likely departure of any
single measurement of response from the average value. Since
the shapes and the resonance frequencies of the modes will
vary from one structure to another and I - details of
location of excitation and response measurement will also
vary, we may think of the output of a particular experiment as
a statistical sampling of a distribution of possible response
values. We present here some formulas for the standard
deviation to be expected in cases in which one system is
excited directly by a point source and for the case in which
a second system is excited by its attachment to the directly
excited system.
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Single System Response. As explained earlier, the
energy estimate provides us with a prediction of m.s.
response (velocity, say) which we write as <v2>. When a
single system is excited by a point source, the theoretical
relation for the variance (square of the standard deviation
a) is as follows [10]

a v2  - 2F(Q) 1 + q>21 (7.4.1)

<v2>2  Q 2M q2>4

where Q = 2Af/7fn, M = wfn/26f, and i is the mode shape.
Also Af is the bandwidth of the noise excitation, n is the
loss factor, and 6f is the average frequency spacing
between modes. The parameters n and 6f are discussed
further to Chapter 9. The function F(Q) is graphed in
Fig. 7.9. The modal shape factor has the following values:

<*>/<q2>2 = 3/2 (one-dimensional systems)

= 9/4 (two-dimensional systems) (7.4.2)

= 27/8 (three-dimensional systems)

The parameter M is the modal overlap, the ratio of
effective modal bandwidth to average frequency spacing between
the modes. The parameter Q is a ratio of excitation band-
width to modal bandwidth. If we divide our interest between
cases of narrow and broad excitation bandwidths and small
and large degrees of modal overlap, we get the following
simplified formulas for the "normalized variance" [10]

a v 2 6 f < 4>2
v = - narrow band (Q<<l)

<v2>2 f q 2>4  no overlap (M<<J)

= 1 narrow band (Q<<l)
high overlap(M>>l)
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_ 6f < 4> 2  band of noise (Q>>l)

-f <2>4 little overlap (M<<l)

rfn/2 band of noise (Q>>l)2Af
high overlap (M>>l) (7.4.3)

The quantities evaluated by Eqs. (7.4.3) will turn out to be
quite important for determining estimation intervals or
"safety factors" for response prediction.

Coupled System Response. When two systems are joined
together and only one system is directly excited by an
external source, then the mean value of enerqv is estimated
by methods to be discussed in Chapter 8. The
variance in response has also been derived for this situation
for the simple case of point excitation, point connection be-
tween systems, and point observation. Such a calculation is
thought to represent an upper bound on the variance to be
encountered in other situations. Thus, the estimates of
confidence that we discuss later are likely to be on the con-
servative side.

From Chapter 4 of Part I, the normalized variance for an
indirectly excited system is [see Eq. (4.2.13)1;

a2 <,p>a < 4>b 6ff 6f

v 1 2 1 2 -(7.4.4)

1<v2>2 <,2,2a <2>2b Af 1 fff(nl+n2

In this expression, i is a mode shape for the directly ex-
cited system, P2 a mode shape for the indirectly excited
system. The average frequency separations for modes in the
two systems are Sfl and 6f2. The excitation and analysis
bandwidths are Af, and the loss factor for systems 1 and 2
are 91 and n2 respectively. If one of the systems has a
single mode in the band, then set Sf Af for that system.
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The exponents a and b in Eq. (7.4.4) are concerned
with the nature of the excitation and observation locations.
If these are "average" interior locations on the structures
(or sound fields) then a = b = 2. In some instances we can
sense the response so that all resonant modes contribute
equally to the response. Examples include measurement of
motion at the free end of a beam or sound pressure at the
corner of a rectangular room. If such a location is picked
for the excitation, then a = 1, and if such a location is
picked for the observation of response, then b = 1.

We see from Eqs. (7.4.1) and (7.4.4) that the variance
is generally reduced as the modes get more dense (and,
therefore, 6f is reduced) and as the excitation bandwidth
Af is increased. From Eq. (7.4.2), systems of higher
dimensionality have a greater contribution to the variance
by this spatial factor, whereas the usually higher modal
density of such a system is usually sufficient to offset
this effect. In balance, one-dimensional systems such as
ring frames and beams have higher variance than do plates,
cylinders or acoustical spaces.

7.5 Using Variance to Calculate Safety Factors

The variance of response has two applications that are
of interest to the structural designer. The first is as a
simple metric to judge the scatter of data in response
simulation experiments. The second is the setting of
estimation levels that represent a reasonable bound to the
expected response in a variety of situations. Usually such
a bound will be several times the estimate of average
response so that the observed response may b! reasonably
expected to fall within the bound. We may interpret such a
bound, therefore, as a "safety factor" on the mean value
estimate.

In order to calculate estimation intervals, we need the
probability of the response variables, <v2>t, <T2>t, <p2>t,
etc. We let any of these positive variables to represented
by the variable 0. The probability density of response is
denoted f(O), which will have the general form sketched in
Fig. 7.10. The probability that the measured response 0
will lie in the interval 01 < 0 < 02 is called the confidence
coefficient, CC, and is graphically represented as the
hatched area shown in Fig. 7.11.
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A very convenient form for the probabilty density is the
so-called gamma density. If we assume that 0 is dis-
tributed according to this density, then we can relate the
confidence coefficient directly to the estimation interval
for a given normalized variance as determined eithe'r by Eq.
(7.4.1) or (7.4.4). For example, if we define an upper
limit 62=r<O> where r is a positive number greater than
unity and a lower limit 01 = 0 for the estimation interval,
we obtain the relationship shown in Fig. 7.11. Thus, for
example, assume that we want to be 99% sure of not exceeding
the response estimate 02, where 02=r<0>. If, for example,
a6/<-2> = 0.3 and if r = 2.5, then we can be 99% confident
of not exceeding a response of 02 = 2.5<e>. We can think of
the factor r, therefore, as a kind of safety factor; the greater
r ii9, the less chance we have of exceeding the estimate.

A second kind of estimation interval, which is of
greater importance in exparimental studies, may be termed a
"bracketing estimate". In this case, we set 02=r<0> as
before, and also set 01=<0>/r. Since the ratio of the limit to the
mean is fixed, we can refer to the estimate in this case as the
mean plus or minus 10 log r(dB). This is a convenient and
natural form for the estimation interval, particularly if
the response has been expressed in logarithmic terms (as
a level.) Again, using the gamma density for -"0), the
relation between CC, r, and 02/<02> for the "bracketing
interval" is shown in Fig. 7.12. The use of this graph to
define an estimation interval is identical to the procedure
described in the preceding paragraph.

Summary. Starting with the estimate of expected
vibrational energy in a band Af, we have shown how to re-
interpret this estimate in terms of variables of more direct
interest. We have also discussed the effects that may cause
extreme values of response at particular locations. In
addition, we have shown how to develop estimation intervals
for use in those cases in which the expected variation leads
to too much uncertainty for the use of the mean value as an
estimate. In the next chapter, we discuss the way in which we
obtain the energy estimate from the SEA model.
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CHAPTER 8. ESTIMATING THE ENERGY OF VIBRATION

8.0 Introduction

This chapter is concerned with describing how one ob-
tains'an estimate of average system energy from the SEA
model and a knowledge of its parameters. In this chapter,
the model and its parameter values are assumed to be given.
In Chapter 10 we will describe how the model is defined.
Parameter values are discussed in Chapter 9. In practical
situations, however, in which one deals with effects of
minor changes in structural configuration or connections in
an overall system that is the same from one situation to the
next, then with each modified calculation of system energy,
one is basically starting at the point where this chapter
commences.

The energy that we solve for is the vibrational energy
in the frequency band Af of each "subsystem". This energy
is found as a result of a set of linear simultaneous
algebraic equations in which the energy of certain systems
and input power to other systems are the known quantities.
The unknown energies of the remaining systems are solved
for in terms of these known quantities and the system para-
meters. The system parameters include the number Ni of
resonant modes in the frequency band, Af, of each system,
the system damping as measured by the loss factor n, and
the coupling loss factor, which we have discussed in
Chapter 3 (of Part I) and will discuss further in
Chapter 9.

Since this Part II of the report is concerned with
engineering procedures, we do not derive the relationships
that we use. The derivations oi the basic relations were
made in Part I. Here, the Pmphasis is on explaining what
must be known to carry out the estimates, and how one
applies that information to interpret the estimates.

8.1 How the Overall System is Described

A fairly general SEA model is depicted in Fig. 8.1.
It consists of N subsystems, each of which may receive
power Hin from an external source (unspecified) and dis-
sipate power 11diss due to the damping of the subsystem.
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In addition, power Hi, is transferred between subsystems by
the action of coupling forces at the junctions between
these subsystems. Finally, the energy of each subsystem is
denoted by Etot, and it is this set of energy values that
we solve for. Since the energy Etot is the vibrational
energy of the subsystem in a frequency band Af, it is the
energy that we began with to make our subsystem response
estimates in Chapter 3.

The fundamental relation that we use is that of the
conservation of energy for each subsystem, or a balance
between power in and out of the subsystem. For the ith sub-
system in Fig. 8.1, therefore, we have:

N,

i,in i,diss ij(8.1.1)
j=1

where the prime on the sum means that j=l is excluded. We
are able to solve for the system energies because both the
dissipated power and transfer power can be related to sub-
system energies. The dissipation relation is

1i,diss =  i,tot (8.1.2)

where ni is the loss factor previously introduced and
w=2nf, where f is the center frequency of the band of
interest.

The power transferred from subsystem i to subsystem j
was found in Part I to be [see Eq. (3.2.11)]:

Hij = nijEi,tot- njiEj tot (8.1.3)

where the quantities nij are called coupling loss factors.
They are not all independent because they must satisfy the
consistency relation
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N iij=N nji (8.1.4)

where Ni, Nj are the numbers of resonant modes of sub-
systems i,j in the band Af.

Placing Eqs. (8.1.2) and (8.1.3) into Eq. (8.1.1)
results in the following set of equations:

Hl 1w = (nl+Z nlj)El,tot - Z! TjlEj,,o t

if2,in/ = (n2+E! n2 j)E2 ,tot - Z! 'j2Ej,tot

iN,in/w = (NN+V.3 nNj)EN,tot - Zi  jNj,tot

(8.1.5)

The solutions for these simultaneous equations is found
in the conventional way. We can, if we wish, express these
equations in matrix form:

nlietot 2 '131 nNl E II 1

-012 t2,tot -n3,2 iN,2 2,n

_"3 -'23 3o ?IN,3 E =,ot 11 .,n/W

1lN ~ 2N ~ 3N ~ N'tot E~o INi ./

(8.1.6)
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This set of N simultaneous equations is appropriate if
only values of input power are known. If, however, the
energy Ei tot of any subsystem is known by measurement or
some other means, then the energy balance equation (8.1.1)
for that subsystem is removed, reducing the order of the
set of equations and the known energy becomes a "source"
term in each equation and is moved to the right hand side of
the new set of simultaneous equations.

The dilgonal terms of the coefficient matrix
rji,tot=fli+Ziij may be thought of as total loss factors for
each subsystem. This total loss factor includes not only
dissipative losses, but also the effects of transfer losses
to other subsystems. Of course, whether or not the loss to
other subsystems actually occurs will depend on the energy
that they contain.

If we call the coefficient matrix in Eq. (8.1.6) N, then
it may be written

N. E ] /w (8.1.7)
Et in

where Et and in are N-dimensional vectors having components
Ei,tot and 11i,in respectively, found by operating on
Eq. (8.1.7) from the left with the inverse of N, defined as
N-1 ;

N- N Et = Et=Et=N "in/ (8.1.8)

The elements of the inverse of N are (-)i+JMij/A, where
Mij is the minor determinant formed by eliminating the ith
row and jth column of the transpose of the matrix N, and
A is the determ4nant of N • The identity matrix I operating
on the vector Et leaves it unchanged.

-1

The calculations involved in finding N and, con-
sequently, Et must be carried out for each frequency band
Af of interest. Since the parameters such as H in i, and
nij will generally vary with frequency, even the set of
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algebraic calculations involved in solving Eq. (8.1.6) can
get quite cumbersome. There are computer routines available,
however, that can reduce this effort considerably if the
number of subsystems N is large. When N is less than 4,
however, the saving of effort is usually not worthwhile and
formal algebraic solution is adequate.

Example: 2 Subsystems

The case in which there are only two subsystems applies
to very many situations of practical interest; the situation
depicted in Fig. 6.1, for example. Equations (8.1.6) in this
case are

nl +n 12 -n2l E '1t' 1 (a,iA

j } (8.1.9)

-n12 n2 +rl21 E2,totJ  H2'in/w

The determinant of the coefficient matrix is

A = (n1+n12 ) (n2+n21 ) - n2n21

(8.1.10)
n nln2 +i 2 nl 2+nln2 l

Thus, the expression for El'tot is

E (8.1.11a)
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E[ F l1innl2+ n2,in 1 -I
E2,tot [ 12+ (r)1+TI2) JA (8.1.llb)

There is a simplification of this result that is very
important from the point of view of estimation. Suppose that
only system 1 has external excitation. Then H2,in=0 and

2l,in )nn

l,tot W (n2+n21) (n1n2+n2n1 2+1 n 21)

and, therefore,

E =E n1l2 (8.1.12)E2,tot El'tot n 2+n 21 (..2

This relation allows us to estimate E2,tot.if Eltot is
known (by calculation cf the response to the environment or by
measurements on a similar system.) Only one coupling loss
factor need be known since the consistency relation Eq. (8.14)
allows the other to be calculated if the mode counts in the
band (or average frequency separation of the modes for each
system) are known.

Example: 3 Subsystems

Three element systems usually arise when a res'onant element
(such as a wall) intervenes between two resonant systems of
interest. The general equations for this case are

1+12+Y13 21 -131 E1 ,tot 1 1,in/W

-I.2 2+21 +Y23 -n32 E 2,tot =2,in/w

-n 13 -n 23 L3+32+31 E3,tot I 3,in/w

(8. .13)
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The determinant A of the N-matrix is quite complicated and
will not be written out here. The matrix inverse to N is
found to be

n2tI3t-n23n32 n2ln3t+n23n3l n21n32+n3ln2t

N- = r 12n3t+ 13f 32  iltn 3t-nl 3n31 nltn 32+n31n12  (8.1.14)

I/n12n23 +n 2tn13 nltn23 +n21n13 nltn2t-nl2n21

where nit ?Il + q12 + n13' etc.

To obtain a simple result that illustrates the procedure,
but that is not representative of many situations of interest,
first assume that only subsystem 1 is externally excited so
that H2,in = H3,in = 0. Secondly, we set nl3=n3l=0 so that
the three subsystems form a chain (l)-*(2) (3). With these
assumptions

El,tot = Hi,in(n 2tn3t-n23n32)/WA (8.1.15)

E 2,tot  = j i'iI(M 12n3t+n13n32 )/wA = E l'to t  % 2tn3t-n33

n~tn23 n3E = IT (nrl. ~+n n)/wA = E 2
3,tot i,in 12 3+2t 13) 2,tot n3t

n12E323

=E3lto t  2t 3t- 23 32
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If we assume that q<n and n32«<n3t' (coupling loss small

copthekd honen Eq.m(.1.).

E

8.2 Alternative Form of the Energy Equations

In certain instances, we may know the energy of vibration
of the subsystems in the absence of coupling. The uncoupled
condition is obtained, as explained in Part I, by causing the
response of all other subsystems to vanish. Thus, a boundary
between subsystems in which motions are the response variable
becomes "fixed". If force (pressure for example) is the res-
ponse variable, then the boundary becomes "free" when the
subsystems are decoupled or "blocked".

The power flow between two subsystems having total
blocked energies

E (b) andE(b

is given by

(b) - E(b) (8.2.1)
12 12 l'tot 21 2,tot

where the coefficients a. are different front the ofj's that

appear in Eq. (4.1.3), bu satisfy the same consistency
relation,

Na I = 2 N 2a 21 (8.,2.2)
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The "blocked energy" relation in this form can only be
applied to two subsystem problems, so that if system 2 does
not have external excitation, one has

E12 a12 E(b)

2,tot WTI 2 - 2 ltot (8.2.3)

since Ebot = 0 if there is not external excitation of
system 2. The result in Eq. (8.2.3) is very near to that in
Eq. (8.1.12). Evaluation of the coefficients a.. is discussed
in Chapter 9. 1J

Fundamentally, the blocked energy of a subsystem is

simply a measure of the input power, since

E (b) = Htot in

Thus, any of the relations in paragraph 8.1 that express actual
energy of vibration in terms of input power may also be
modified to express vibrational energy in terms of blocked
energy.

8.3 Parameter Evaluation Using the Energy Equations

The energy equations can also be used in conjunction
with experiments to calculate the parameters (coupling loss
factors and loss factors) for a system. Eqs. (8.1.5) are
linear in these parameters. Thus, if we measure the energy
in each subsystem for a known set of input power values
1i,in we can generate a set of linear simultaneous equations
for the ni's and nij's.

If we have N subsystems, then the total number of
parameters in N2 which consists of N loss factors and
N(N-l) coupling loss factors. Of course, we could use the
consistency relation Eq. (8.1.4) to reduce the number of
required coupling loss factors to N(N-l)/2 and an equal
number of mode count ratios could also be found.
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Any one experiment (for example, setting H2,in0 and
lin = 1T3,in = " = HN,in = 0 and measuring all the Ej,tot

values) generates N simultaneous equations for the para-
meters. Therefore, we must perform N independent measure-
ments (for example, sequentially injecting known power into
each of the subsystems and measuring the resulting energies)
to obtain the necessary N2 equations. Of course, any
parameter values we may know will reduce the number of measure-
ments accordingly, although we may choose to build some
redundancy into the parameter evaluation for greater accuracy
or as a check on the procedures.

We should emphasize that the procedure for parameter
evaluation just described is not an established method. There
has been only partial success for it in the cases for which
it has been tried. The difficulties have shown themselves
in the form of negative values of parameters. This impossible
answer is the result of small errors that occur in each set
of measurements that mounts up as one proceeds through the
calculations. There is no reported analysis of the sensitivity
of the derived parameter values to small errors in measured
energy and input power values. Such an analysis is needed to
establish the use of the energy equilibrium equations as a
useful technique for determining SEA parameter values.

8.4 Useful Approximations and Simplifications

In most SEA calculations, three or four interconnected
subsystems may suffice to describe the overall system, but
it can easily happen that more subsystems are required. Even
though the equations introduced in paragraph 8.1 are readily
solved for such numbers of unknowns, it is desirable in many
cases to seek ways to abbreviate the calculations.

We may want to simplify the calculations in order to
get a "quick look" answer to compare with the more detailed
calculation. Or, we may know some of the parameter values
only approximately and seek to make sure we are not spending
effort on evaluating unneeded parameters. Also, it is
sometimes easier to get a better idea of the energy flow
process from the simpler calculations so that changes in
vibration levels that woul3 result from changing parameter
values can be inferred.

The principles of simplification may be listed quite
simply. They will not all be applicable or useful in any
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particular system, but by using them it is usually possible
to get answers that are of sufficient accuracy. The principles
are as follows:

(1) Compute the approximate modal energies of the
directly excited subsystems using Etot=Hin/n.
The subsystems with the high modal energies Etot/N
are usually those that will "drive" the other
subsystems.

(2) Identify the path(s) from the most energetic sub-
system to the subsystem of interest. Concentrate
on those paths that would appear to be dominant
based on the relative sizes of coupling and
dissipation loss factors.

(3) When the loss factor of a subsystem is larger than
the coupling loss factor connecting it to a more
energetic system, ignore the coupling loss factors
in the total damping ni. When the loss factor is
smaller than the coupling loss factor, assume the
subsystem in question has the same modal energy
as its more energetic neighbor.

(4) If a neighboring subsystem has less modal energy
than the subsystem being studied and it is not
"in line" to another subsystem of interest, ignore
it -r at most include the coupling loss factor
to iL as part of the subsystem damping.

The result of these approximations will generally lead
to a "chain" sort of calculation as illustrated by the results
in Eqs. (8.1.12) and (8.1.16). The energy of the adjoining
subsystem is found by taking the product of the energy of the
source subsystem times the ratio of coupling loss factor to
damping for the receiving subsystem. This process is then
repeated for all subsystems along the line.

To illustrate the application of this simplified approach,
consider the diagram shown in Fig. 8.2 that models an airborne
computer. The exterior panels and frame of the computer are
excited directly by the environment, and we are interested in
knowing the dominant path that the energy takes getting to the
circuit boards and what the resulting vibration levels will be.

Suppose that the input power to the computer frame is
known to be Ul,in= 0 .1 watts in the 250 Hz octave band (we will
describe ways of computing input power in the following
chapter). Our first task is to compute the energy of system 1.
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Noting that and n14 are both small compared to nl' we ignore
the coupling and compute

-3

El tot = lin/wnl = 6.4x10 joules, (8.4.1)

and a modal energy of

-4.
E = E ltot/N1 = 6.4x10 joules. (8.4.2)

Using Eq. (8.1.12) and ignoring coupling losses compared
to dissipation, we get

q12 _6
E2,tot = Eltot 2 = 6.4xi0 joules (8.4.3)

and

n14-
E E 14 - 6.4xi0 joules, (8.4.4)4,tot l'tot n14

corresponding to modal energies of E2=6.4x10 - 8 and E4 = 3.2xi0- s

joules respectively.

The energy of the circuit boards due to the air path
is given by

E(air) =2E__23 = 6.4x10 0  (8.4.5a)

3,tot 2,tot n3

while that due to the structural path is
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I

(struct) E n43 6.4x10 (8.4.5b)
E3,tot 4,tot n-,

Obviously, the structural path is more significant in this
example. The modal energy of the circuit board is, therefore:

E3 = 3,tot/N3 = 1.3xlQ joules. (8.4.6)

Since E3 is greater than E2, the actual energy flow will
be from the circuit board to the air space. That is, the
boards are radiating more energy to the air space than they
receive from the surrounding air. Of course, this conclusion
is dependent on the parameters arbitrarily chosen for the
example, but the procedure shown here will usually supply
results of sufficient accuracy and provide insight into the
physical principles involved.

8.5 Summary

In this chapter, we have shown how energy estimates can
be made from the equilibrium relations of SEA. These estimates
must use values of SEA parameters, which will be discussed in
the following chapter. The estimate is obviously also based
on a model of the system. Nevertheless, the work in this
chapter will be sufficient to tell us how the system might be
changed to reduce the response to an acceptable level.
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CHAPTER 9. THE MEANING AND USE OF SEA PARAMETERS

9.0 Introduction

In the preceding chapters we have shown how to interpret
energy estimates in terms of dynamical response and how the
energy estimate itself is cimputed in terms of the SEA model
and its associated parameters. In this chapter we discuss
the SEA parameters in more detail, describing what they are
from a physical point of view and how one goes about getting
values for them.

The parameters govern the power input to each subsystem,
the dissipation of energy, energy storage, and energy transfer
between subsystems. Section II of this report is a fairly
extensive tabulation of SEA parameters, so that we shall not
duplicate that work here. Rather, our emphasis is on ex-
plaining the parameters and how they are used in the cal-
culations. To obtain formulas or values for the parameters,
reference should be made to Section II.

9.1 Dissipation Parameters

The dissipation of stored energy in each subsystem is
measured by the parameter ni, termed the "loss factor." The
loss factor is a measure of the ratio of energy dissipated
per unit time (one second) to average energy stored

diss
2wfEstored

Defined in this way, the loss factor is the reciprocal of the
"quality factor" Q used in electrical engineering: n = l/Q.
The damping parameter commonly used in mechanical engineering
is , the ratio of damping to critical damping, and n = 2 .

The los5: factor n is occasionally introduced in structural
vibration problems as the phase angle of a complex Young's
modulus: EEol-in). In other cases, the damping is intro-
duced via a viscous element of value R, in which case,
n=R/wM where M is the subsystem mass. Of course, if the dis-
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sipation is actually occurring at the joints or rivet points,
neither of these damping descriptions is really descriptive
of the physical dissipation process.

It is occasionally asserted that a loss factor description
of damping implies a very particular mechanism of dissipation
and that erroneous estimates will occur if the actual
mechanism is not the assumed ones. In general, response
estimates are slightly dependent on the mechanism of damping,
but the differences are very small if the loss factor is in
the range n=0.l or less. Most structures have damping much
less than this, so that we need not imply any specific
damping mechanism by introducing the loss factor.

In acoustical systems, the dissipation is normally
expressed by the rate of decay of sound level after the
source of excitation has been turned off. This "decay rate",
DR (in dB/sec), is given by

DR = 27.3 fn

where f i ie center frequency of the band Af in which the
data is ta, i. Typical values of decay rate for the small
acoustical spaces acsociated with aircraft are of the order
of 100 dB/sec or greater. It is often difficult to measure
such rapid rates of decay with standard acoustical apparatus.
In such a circumstance one may use an oscilloscope for the
display.

Damping is probably the single most important parameter
in establishing subsystem response because we are dealing
with resonant modes. A 10% error in damping will result in a
1 dB error in the response estimate, and a 100% error in
damping results in a 3 dB change in estimated response. When
coupling factors are larger than the damping, the damping
plays a less important role in setting response levels -
there is then a tendency for energy equipartition with the
adjacent subsystem (energy equipartition means equal modal
energies of the subsystems connected by the "large" coupling
loss factor).

Damping may be enhanced by addition of "applied damping"
treatments. This might consist of a single layer of visco-
elastic material adhered to the panel. Such a treatment is
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a "free" or "unconstrained" layer, as diagrammed in Fig. 9.1a.
A more complex damping treatment that does not have as large
a weight penalty is the constrained layer, shown in Fig. 9.1b.
An alternative that uses a stiff spacer amplifies the strain
in the viscoelastic layer as shown in Fig. 9.1c. A variant
of this design uses a constrained layer spaced away from the
base panel. Finally, to reduce "drumming" vibration of a
single mode, the damping element can employ resonance to
amplify strain and provide a high degree of damping over a
fairly narrow frequency range as shown in Fig. 9.1d.

9.2 Power Transfer Parameters

The power flow between subsystems may be described either
in terms of the actual energies of vibration, or in terms
of the energy of vibration that they would have in the ab-
sense of coupling. In the first case, the parameter of
interest is the coupling loss factor, r- There is no
general name for the second parameter, tat it has been de-
noted in Part I as a-- The formulas for power flow from
subsystem i to subsys em j are as follows:

Hij nijli,tot - njiEj,tot (9.2.1a)

= a E(b) - waj E(b) (9.2.1b)ij i,tot i j,tot

Equation (9.2.1a) applies to any situation, but Eq. (9.2.1b)
has only been demonstrated to apply to 2-subsystem situations.

The principle utility of aij is that it allows for a
computational algcrithm for niA. This relation was derived
in Part I and will be used in ection II of the report. To
illustrate how this works, however, suppose the two sub-
systems are joined at a point and that a point input impedance
Zi,in can be defined for each at the attachment location.
Then, the value of a.. is

ij

R R.2Af i'in jin (9.2.2)
-ij ww i 1z +z. 12

i,in j,in
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A general relation between the coupling loss factor
qij and the parameter i may be found when the jth system
becomes "dense", i.e., N fn;/Af>.l. In this circumstance,
as shown in Part I [Eq. (4.1.21)]

rij = aij (1-a ij/ni)-1  (9.2.3)

In the ease where subsystem i has a single mode, Ni = 1,
then one can show that [Eq. (3.4.6)],

r~. = R i,in /WMj  (9.2.4)

where M- is the total mass of the jth subsystem. When the ith

system as many modes, Ni>>l, one can show that nij-*aij. Thus,
the evaluation of the coupling loss factor can be expressed
entirely in terms of junction impedances.

The theoretical calculation of coupling loss factors can
get quite complicated for one or more of the following
reasons:

1. Neither system is "dense"; only a few modes of
each of the two subsystems resonate in the band
of interest.

2. The junction is not a point, but extends along
a line or over an area. More complex impedance
functions are necessary to describe the inter-
action in this case.

3. The actual interaction may not be "scalar",
but "vectorial". This is particularly true
when the interacting systems are structures,
since a proper description of the interacting
forces may include moments and shear and
compressional forces. Our purpose in this
chapter is to indicate the process b,- which one
obtains the coupling parameter. The detailed
methods and available results are covered in
Section II of this Part of the report.
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We have shown that the coupling loss factor can be
related to the junction impedance. It can also be related
to other parameters that are well known in certain
specialized fields, such as sound transmission between rooms.
In that field, the sound transmission is defined by a
"transmissibility" t, which is related to the well known
"transmission loss" TL by

TL - 10 log T. (9.2.5)

The relation betwee" coupling loss factor and T is simply

Ac
- (9.2.6)

ij 2wV.

where Aw is the area of the wall through which the sound is
"leaking", c is the speed of sound and Vi is the volume of
room i. Thus, all the data available on TL for various wall
constructions becomes a source of information of coupling loss
factors between subsystems that are acoustical spaces.

The experii -ntal determination of coupling parameters is
usually approached along lines indicated in Chapter 8. A
system has power injected into it in a simply way and the
resulting response (or subsystem energy) is measured. From
this data and a knowledge of the loss factors in the system,
the coupling loss factor may be found. This is the manner in
which the transmissibility between rooms is found. From
Eq. (8.1.12), a measurement of the ratio

-2 t t '12 (9.2.7)

El,tot r2+ 21

is sufficient to determine n12 if q2 is known and 921<< 2.

Thus, if the junction of interest is reproduced between two
test structures, structure 1 is excited in some convenient
way, and the damping of the receiving structure (#2) is
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adjusted to satisfy n2>>n 21 , then a simple measure of the
vibrational energies of the two structures will determine

9.3 Modal Count of Subsystems

The modal count Ni of a subsystem is the number of modes
of that subsystem that resonate in the band Af under con-
sideration. In some systems the number may be of the order
of unity, in others (particularly acoustical subsystems at
higher frequencies) the number may be in the thousands.
Basically, the mode count is a measure of the number of modes
available to accept and store energy.

In SEA work, the modal count is often expressed in terms
of a modal density n so that

N. = n. Af . (9.3.1)1 1

Since the modal count will vary from one band to another, we
may indicate that the modal density will vary with f, the
center frequency of the band, by writing it ni(f). Most sub-
systems have modal densities that vary with frequency.

In Chapter 7, we expressed the modal density ni(f) in
terms of its reciprocal, the average frequency separation
between resonant modes,

6 fi = 1/ni(f) (9.3.2)

One may also find the frequency separation expressed in terms
of radian frequency

6 wi = 1/n. 2 = 27'f= 2n/ni(f) (9.3.3)
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rI

and, consequently, ni(w) = ni(f)/2T.
1

Most SEA formulas that are expressed in terms of modal
density can be converted to modal count by using Eq. (9.3.1).
This is particularly true in dealing with a system that only
has one mode in the band of interest Af. It also applies to
cases in which the subsystem may have several modes, but we
may wish to concentrate our interest on a single resonant
mode. In this case, Ni=l and ni(f)=i/Af and not i/Sfi. Note
that the fundamental quantity in all cases is the mode countNi, and the modal density is a derivated quantity.

The modal count may be found by both experimental and
computational procedures. We shall review both methods in
Section II. Here we describe briefly these procedures as a
way of determining the most appropriate method in the pre-
liminary design process. Very often several of these
alternatives will be possible ways of getting a modal count.
One is not faced with this dilemma of choice very often with
the other SEA parameters.

The only really verified way of measuring the modal
count is to excite the subsystem with a pure tone and observe
the response at a second location. The frequency is then
swept slowly over the band Af and the response peaks are
counted. Of course, only modes that are non-vanishing at the
excitation and observation points will show-up in the response.
For this reason, one should select those locations carefully;
either at a "corner" location for acoustical systems or along
a free edge of a structure.

One will also miss modes if their average spacing 6fi
becomes of the same order as their resonance bandwidth fni.
The equality

6fi = fni (9.3.4)

is the condition of modal overlap and marks the frequency
range in which one will begin missing modes because they are
too close togeLher to be resolved. It is this limitation
that the second procedure, the "point conductance" method is
proposed to avoid. This method relies on the result that a
mean square force <f2> in the band Af applied at an "average"
point on the subsystem will result in an injected power
[see Eq. (2.2.24)],
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R. = <f2 >/4M.Sf. , (9.3.5)in i 1

and since the mass Mi is known and presumably <f2> and Hin
can be measured, we can find 6f,. This procedure is more
complicated than the simpler frequency sweep method and must
be considered less well established at present.

There have been many theoretical studies of modal
density for both acoustical and structural systems. Generally,
the modal density calculations, when tested experimentally,
have turned out to be fairly reliable. Modal density is one
of the easier parameters to calculate and it seems quite
sensible to calculate it if at all possible. In many cases,
it will turn out that the appropriate formulas for this cal-
culation are available.

The following is a partial list of system elements for
which calculations of modal density exist:

1. Flat plates with various boundary restraints,

2. Flat plates of complex construction including
layered plates,

3. 'Shells and shell segments, including spheres,
cones, an cylinders,

4. Acoustical spaces of most shapes, including
rectangular, spherical, cylindrical; and volumes
representing combinations of these,

5. Various beam and girder shapes including flexural
and torsional deformations.

Fortunately, modal count tends to be an extensive property of
a system. That is, the total mode count may be estimated
by adding the number of modes expected for the various parts
of the system. In this way, mode count can be predicted for
fairly complex structures.

As an example, consider the estimation of modalcount
for the equipment shelf shown in Fig. 9.2. Suppose that the
two end plates have a diameter of 1 ft and the shelf is 3 ft
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long, consisting of four 4 inch webs. This complicated
structure is made up of six plates of varying shapes, but
it is known that the mode count of a plate of thickness h
and area A is given by

N = /3A Af . (9.3.6)hc£

Since h = 3/16 in. and ct = 17,000 ft/sec, (the speed of
sound in the plate material) are the same for all six plate
segments, the total mode count is found by adding that due
to the parts, or by using the total area of the structure,
which is

tot= ( lD2 ft

Ato t = (2 'T ) + 4(3) (1/3)= 1.6 + 4 = 5.6 ft 2

(9.3.7)

to give a mode count

N = (1.7) (5.6) • Af = 1.9 x 10 2Af (9.3.8)(0.03) (17,000)

Thus, in the 1 kHz octave band (Af=71OHz) we would expect to
find about 13 resonant modes. The exact spacing and location
of these modes along the frequency axis would depend on de-
tails of construction, but the number of modes spread over
this 710 Hz interval would not. Thus, stiffening the structure
by the addition of gusset brackets and the like will perturb
the resonance frequencies, but the modes would still occur
at intervals of about 50 Hz along the frequency axis.

9.4 Input Power Prediction

The input power is one of the quantities that is pre-
sumed known in the SEA calculation. However, it is only in
rare instances that the input power will be known directly.
If one is excitinq the structure with a shaker and using a
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force gauge between the shaker and the structure, it is
possible to measure the input power directly. One is more
likely to know a mean square force on the structure and some
description of the spatial distribution of the load. This
is the case of loading by a turbulent flow or acoustical
noise pressure field. In this situation, the spatial
characterof the excitation is defined by a correlation
function that will determine how well the spatial shape of
the resonant modes will correlate with the excitation.

In a few situations, the excitation may be thought of
as highly localized and taken to occur at a point in the
system. Eq. (9.3.5) gives an estimate for input power in
this instance, assuming the mean square force is known.
However, this situation is not as easily realized as it might
appear. The difficulty is that the structure has a very low
input impedance at a resonance, so that if the shaker has a
finite impedance, its force output will drop. This is
illustrated in Fig. 9.3. The result is that the effective
value of mean square force driving the structure is
significantly below the apparent value obtained by multiplying
the mean square current times the blocked force-current
relation for the exciter.

In the cases of excitation by an acoustical noise field
or a turbulent boundary layer, relations have been developed
for the input power for a variety of structures that includes
flat plates, cylinders, cones and other axisymmetric shapes.
The appropriate relations for these cases are presented in
Section II. To illustrate how we would use this parameter to
calculate input power, we first consider excitation of a flat
homogeneous plate by a turbulent boundary layer.

It turns out that the most important determinant of the
power injection by a turbulent boundary layer is the ratio of
convection speed of the pressure variations (about 80% of the
free stream flow speed) to the bending wave speed. For air-
craft speeds and aircraft skin panels, the bending speed is
usually less than the convection speed. In this case the
input power to the structure in the band Af is known to be[15].

<p2 > A2 hp1l
II. p (9.4.1)

in R. Ain p
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where <P2>Af is the mean square turbulent pressure measured on

the panel in the band Af, A is the area of the panel,
Rin=4M6f is the input point esistance of the panel. The
bending wavelength on the plate is XP and the displacement
thickness of the boundary layer profile is 6I"

We can also find the power input to a structure from
a sound field using the expressions for coupling loss factor
already presented. Using

H. au Eacoust,in acoust, struct acoust, tot' (9.4.2)

the following expression results for the power input from a
sound field

<p2 > A2  2
in = R. tf P Crad 2TA (9.4.3)

in

where <p2> f is the mean square pressure measured on the
surface of the panel, A is the wavelength of sound, and arad
is the so-called radiation efficiency of the panel defined
by

R
a rad (9.4.4)grad - cA

p

The other parameters are as previously defined. Thus,
on the basis of the above, the designer can predict the power
injected into a panel by a turbulent boundary layer or an
acoustical noise field in terms of the pressure measured
on the panel and other panel properties. Such estimates are
then to be used in the band by band calculation of energy
distribution throughout the system.
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9.5 Conclusions

The SEA parameters are naturally occurring quantities

in the theory of energy sharing of systems. These para-
meters may be evaluated by the designer by both analytical
and experimental means. In many cases, they are related to
more conventional system descriptors. Certainly, this is
true for the energy dissipation, expressed by the loss
factor. Mode count or modal density are not concepts
original with SEA, but they are not widely used parameters in
conventional structural dynamics. The coupling loss factor
is a parameter that is unique to SEA studies, but even here
we find that is often relatable to previously known para-
meters such as radiation resistance, transmissibility, and
junction or point input impedance.

Of course, the particular coupling loss factors and
other parameters that we need to find depend fundamentally
on the choice of subsystems and their interconnections in the
SEA model. This is the topic of the final chapter in this
part dealing with the preliminary design process.
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CHAPTER 10. MODELING THE SYSTEM

10.0 Introduction

We have now worked our way back from the use of the
energy estimate, how that estimate is derived, and what the
parameters are that enter the energy estimate to the most
basic step of all in SEA -- the definition of the SEA model.
This part of the effort is one of the earliest steps in the
use of SEA in a design task. Fortunately, unless the basic
system changes, this may only have to be done once. As
various design modifications are made, perhaps with the goal
of reducing response, the coupling and other parameters will
change and the energy and associated response estimates will
also change.

In a way, however, those aspects of the response estimation
task that we have been discussing are deductive, and in that
sense, straightforward. In the model definition phase, the
designer must extract from the physical system - a fuselage
and attached electronics pod, for example - a model consisting
of groups of resonant interacting modes that will allow an
estimate of response to be made. This is the synthetic part
of the designer's task. and it is less str;ightforward to
describe in detail juzt how this is to be accomplished in any
particular case.

In this final chapter of Section I, we examine the pro-
cedures for developing SEA models insofar as a largely
synthetic and inductive process can be set down as a set of
procedures. Since the principal motivation for this report
is the application of SEA to high-speed flight vehicles, the
discussion uses examples from this area of engineering, but
the procedures have much broader application. The real
development of synthetic procedures, however, must occur as
the experience of the designer with SEA methods is increased
and, consequently, the important step is to begin to use SEA
to make estimates in the first olace.

10.1 Definition of Subsystems

SEA is able to provide estimates of complex system
response because of our ability to group modes together and
deal with them statistically rather than individually and
deterministically. The modes are grouped according to the
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following principles:

1. They all resonate in the band Afi in the entire
SEA model, all parameters are evaluated as
averages over the frequency interval Af also.

2. Modes are grouped by major sections of the system
that are to be identified in the final response
estimates. Thus, all wing modes, fuselage modes,
electronic pod modes, etc., that resonate in the
band Af would be grouped separately.

3. For any section, there may be differing classes
of modes that one may wish to identify. For
example, a truss or beam may have both torsional
and flexural modes that resonate in Af. These
modes may be grouped together if we expect them
to be well coupled, or they may be treated as
separate subsystems.

A class of modes of a section of a system, resonating in
the band Af, is an SEA subsystem and represented by a "box"
in a diagram like that in Fig. 8.1. The expected mode count
Ni labels the energy storage capacity of the box. It is
important to realize that modes that resonate outside the
band Af (so-called non-resonant modes) are not included in
the modal count Ni, which pertains to resonant modes only.
These non-resonant modes may play a role in transmitting
energy from one sub-system to another, but the energy of
vibration that they acquire in doing so is neawly always
substantially less than that of the resonant modes. Con-
sequently, we do not count the vibrational energy of non-
resonant modes in estimating response.

One of the criteria for modal similarity in defining the
subsystem is that the modes have nearly the same damping.
Thus, the dissipation of energy by the "box" can be represented
by a single loss factor ni as was done in Chapter 8. A
detailed study of the individual modes would show some
variation in their damping. Theoretical analyses of permissible
variations in damping have not been carried out, but we might
assume that the individual modal loss factors could vary over
a factor of three or so and the estimates of response based on
the average damping would not be too far off. If a mode or
group of modes has damping values that differ by a factor of
10 from the mean, than that group should probably be "split
off" to form another subsystem.
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Another criterion for modal similarity relates to the
interaction with the loading environment. Thus, a particular
form of excitation, such as acoustical noise, will excite
flexural waves on skin panels most directly. In-plane
compressional vibration of the skin would be only weakly
excited. If the damping and coupling between in-plane and
flexural modes were such that equal modal energy between
these modes were to be expected, then only a single sub-
system representing the skin structure might be necessary.
If appreciable difference in modal energy might be expected,
or if the distinction between in-plane and flexural or
transverse motions is important for some other reason, then
the skin structure should be represented by (at least) two
subsystems. In this case, the "flexural" subsystem would have
an input power 1[in, but the in-plane modal subsystem would
be excited only by its coupling to the flexural subsystem.
There are other considerations as well. The larger that Af
is made, the grcater the number of resonant modes for each
subsystem and, according to the discussion of Chapter 7, the
smaller the variance in the estimate. On the other hand, if
the bandwidth is too great, the assumption of uniform loss
factor and coupling loss factor for all modes will not be
accurate. Also, too broad a bandwidth causes frequency
resolution to be lost, which may be important in some
applications.

As a final item on the identification and definition of
subsystems, it is worthwhile emphasizing that certain
elements of a structural and environmental system are not
SEA subsystems. For example, a turbulent boundary layer is
not an SEA subsystem since it cannot be represented as a set
of linear resonators or modes of oscillation. A turbulent
flow must be . .garded as a source of power, and not a modal
subsystem. An acoustical environment may be treated as a
power source but in some circumstances (a reverberant test
chamber for example) it may be treated as another subsystem.

10.2 Identifying and Evaluating the Coupling Between Subsystems

The identification of the coupling between modal groups
that exchange energy can be quite subtle. Certain features
of the problem are fairly obvious, and should be dealt with
first in the modeling process. For example, consider the
system shown in Fig. 10.1, consisting of an exterior shell
of an airborne computer that is excited by acoustical noise,
and internal ficme, and a circuit board mounted into the
frame and, of course, an air space within the shell.
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According to the procedures indicated in the preceding
section, the first task is to divide the system into its
major structural and acoustical systems. This division is
shown in Fig. 10.2. We note that at least two of the
elements have different classes of modes that we may want to
treat separately, but for the time being, we shall treat
each of the boxes in Fig. 10.2 as an SEA group of "similar"
modes.

We now inquire about the energy transfer mechanisms at
work in this system. Most obviously, power will be trans-
ferred through the mechanical connections between the shell
and the frame and the frame and the circuit board. Also,
the surface of contact between the enclosed sound field and
the shell on one hand and the circuit board on the other.
These power flow paths are shown in the diagram in Fig. 10.3.

A "first cut" at finding the circuit board response in
this example might be to settle for the system as shown,
proceed with evaluation of the parameters (Chapter 9), solve
the energy equations for the energy of the circuit boards
(Chapter 8) and interpret this energy as strain and
acceleration spectra of the component on the boards
(Chapter 7). We might then investigate the relative roles of
acoustical and vibrational transmission, evaluate stiffening
the frame, putting acoustical absorbing material within the
shell, or changing the construction of the mountings of the
frame into the shell. As each of these changes were made,
coupling and damping loss factors would change and the
response estimates would likewise change, indicating an in-
creased or decreased vibration of the circuit boards. The
basic model configuration would be unchanged, however.

At some point we might want to improve our model by con-
sidering eftucts thus far ignored. One of these is the role
of nonresonant modes in the transmission of vibrational
energy. The diagram of Fig. 10.3 for example indicates that
if the frame were perfectly rigid and Lhere were no resonant
modes of the frame in the band Af, then there would be no
energy transferred to the circuit boards by the structural
path. This is obviously not so, since a rigid translation
of the frame would transfer energy from the shell to the
circuit boards. In modal terms, this energy transfer is a
result of the nonresonant excitation of modes that have
resonance frequencies above the band Af.

In a similar fashion, acoustical excitation of the shell
will result in vibration and nonresonant modes of the shell
that may be quite effective in exciting resonant acoustical
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modes of the cavity within the shell. Since we are treating
the external acoustical fields as a power source in this
example, the effect of nonresonant motion of the shell is to
add an additional power source directly to the cavity. These
two modifications due to nonresonant vibration of subsystems
that connect other subsystems are shown in Fig. 10.4. With
this change in the model, the additional coupling loss factor
913 must be evaluated, as well as the input power H4 in"
Obviously, we should expect the calculated circuit board
vibrations to change as a result of these changes, but the
change may not be very great. If the predictions turn out
to be quite insensitive to this modification, then one would
quite likely revert to the model of Fig. 10.3 for systems of
this type.

The preceding discussion illustrates why modeling is a
matter of judgement. The model of Fig. 10.4 is more precise
than that of Fig. 10.3, but it is also more detailed and more
cumbersome. It is only after the revised calculations have
been made with the greater detail included that one can tell
whether or not the extra effort is justified.

10.3 Subsystems Within a Section of the System

In paragraph 10.1, we noted that a section of a vehicle
could contain groups of resonant modes that were sufficiently
dissimilar so that separate subsystems might be necessary to
model the system. In the following we explore this idea
further and illustrate its effects on the model by returning
to Fig. 10.2.

If the two types of shell and frame modes are each
treated as a separate subsystem, then all the subsystems and
their interactions are as shown in Fig. 10.5. Clearly, what
began as a fairly simple model of the circuit board
excitation in Fi9. 10.3 has become a very complex model
indeed. Is the complexity necessary? Generally no, but a
blanket answer cannot be given. If the process of refining
the SEA model in going from that shown in Fig. 10.3 to that
shown in Fig. 10.4 were to result in significant changes in
the estimate for board vibration, then the further refine-
ment in goina to a model like that of Fig. 10.5 might be
deemed useful. One should always keep in mind tL._ gereral
results for estimation variance discussed in Chapter 7. If
the refinements in the model causes the modal densities of
certain subsystems to get to be too low, then the variance
may increase so much that the more refined mean value
estimate has little significance.
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Most of the changes from Fig. 10.4 represented by Fig. 10.5
are fairly evidence, but we should comment on the energy
transfer Hlalb and f2a 2b between the new subsystems. Con-
sidering the frame firse, we can note that there are two ways
of coupling flexural and torsional motion in a beam. Unless
the cross section of the beam has a high de~ree of symmetry
(I-beam or box section), there will generalty be continuous
coupling between these forms of motion. Likewise, end conditions
on the beams can cause coupling. If a simple beam is clamped
at an angle other than .,/2 to the centerline, flexural waves
will reflect from this boundary as a combination of flexural
and torsional motions.

It will be clear by now that the number of kinds of
structural and acoustical subsystems of interest in SEA is
very great. Many of the parameters needed to analyze
systems comprised of these subsystems are listed and evaluated
in Section II of this report. Even so, it is often necessary
to estimate values for parameters of systems that may not be
in the tables. In these cases, one can often treat the
actual system as "somewhere in between" two limiting cases.
For example, a short tab connecting two structures might be
bracketed by a long beam connection and a rigid connection
between the structures. Also, one can often determine the
coupling loss factor experimentally.

10.4 Discussion

We must keep in mind that although the major emphasis in
this report is the use ot SEA in preliminary design, one of
the major advantages of SEA is that the model and the
associated estimates of response can be continually
sharpened and refined as more detail regarding the system is
developed. Thus, at the very early stages, the major
structural sections may be modeled as homogeneous cylinders,
plates, etc. Also, we would probably use broad frequency
bands, octave bands for example, for the frequency resolution.
This would keep the number of parameters down to a reasonable
limit and more realistically reflect our knowledge of the
system. As our knowledge of the details of the system in-
creased, the model could include more modal groups (sub-
systems) and a finer division along the frequency scale (we
could change to third-octave bands, for example;.

None of the other estimation schemes has this capability
of continual adjustment in the procedure to accommodate the
increased knowledge about the system. In a way, we can think
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of the SEA model as a communication channel that is able to
accommodate a certain amount of input data (system parameters)
to predict a response (output). A more complex model
represents a channel with greater information handling
capacity, and we can adjust the model to handle the available
information. Thus, SEA is an estimation tool that can be used
throughout a project from preliminary to final design.

73



ACOUSTICAL NOISE

EXTERNAL SHELL

FIG. 10.1

DIAGRAM OF AIRBORNE COMPUTER ASSEMBLY

CIRCUIT
SHELL FRAME BOARDS

ACOUSTICAL NOISE ACOUSTICALLY j FLEXURAL IFLEXURAL
SLFASTMOE AN a TORSIONALJMODE

AYCAVITY

I ACOUSTICAL
MODES

FIG. 10.2

MAJOR SECTIONS OF THE SYSTEM SHOWN IN FIG. 10.1

Preceding page blank 75



r
MECHANICAL CONNECTIONS

IIn,./ FRAME

SHELL B OARDSI

AIR-STRUCTURE
CONTACT SURFACES

FIG. 10.3

SYSTEM OF FIG. 10 . 2WITH POWER

TRANSFER THROUGH INTERFACES SHOWN

FIG. 10.4

MODIFICATIONS IN DIAGRAM OF FIG. 10.3

DUE TO NONRESONANT MOTIONS OF FRAME AND SHELL

76



/I
r]i

ll,IN JFRAME
! FLEXURAL

:- MODES
FAST -20 a2

- SHELL

PaIG 10.512TESMODEL FTESSE FFG~oiWT RAE

11---1b FRAME CIRCUIT

• -]~lbi TORSIONAL BOARD

F MODES MODES

2b

1 - CAVITY

SMODES

14

FIC. 10.5

THE S EA MODEL OF THE SYSTEM OF FI G. lo.1 WITH A G REATE R
NUMBER OF MODAL GROUPS AND INTERACTION REPRESENTED

77



SECTION II - EVALUATION OF SEA PARAMETERS

CHAPTER 11. PARAMETER EVALUATION - THE ENGINEERING BASE OF SEA

11.0 Introduction

In Part I and Section I of Part II of this report, we
have concentrated on the theory for and use of SEA in response
prediction. The role of the parameters in the various
equations for energy and response of the subsystems -
parameters such as damping loss factor, mode count and
coupling loss factor - has been adequately pointed out. These
we term SEA parameters because they enter in all SEA pre-
dictions and to a degree, they are used in a way that is
unique in the SEA application.

This section is concerned with providing information on
the evaluation of SEA parameters. This evaluation may be
experimental, theoretical, or a "guesstimate" based on
similarity with other situations for which the parameters have
been found previously. Indeed, for many practical situations
we may expect the guesstimate to be the primary "method" for
finding SEA parameters.

Experimental procedures may be "direct" as when, in the
case of mode count, one proceeds by counting resonant peaks.
The procedure may be "indirect" as when one infers a coupling
loss factor from the result of a vibrational response experi-
ment. We present both direct and indirect methods here for
all the parameters . The best method in any situation will
depend on the range of parameter values involved, as dis-
cussed in the paragraphs that follow.

Theoretically derived parameter values are very often
used for modal densities or mode count and the coupling loss
factor. A few results are available from the literature --

several are quoted here. Situations not covered in the
text may be treated from the references which should serve
as adequate back-up for new calculations or a quoted result
on a similar system that may serve as a useful estimate.

Preceding page blank
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11.1 What are the SEA Parameters?

The SEA parameters are measures of the dissipation of
vibratory energy the number of resonant modes in a frequency
band available to store vibratory energy, and the coupling
between the energy containing subsystems.

Chapter 12 describes how damping is measured or estimated
analytically. The mechanisms of damping or dissipation vary
significantly from one system to another. The losses in
mechanical energy may result from molecular effects in poly-
mers, air pumping at joints of built-up structures, or the
motions of dislocations in metals. If the losses are not
too great, however, a single parameter may be used to describe
the dissipation effect in any of them. This parameter is
called the "loss factor", and is the damping descriptor most
often used in SEA.

In Chapter 13 we discuss how one evaluates the mode count;
i.e., the number of resonant modes of a subsystem that are
available for the storage of energy in a frequency band.
The mode count, which is the fundamental quantity, may some-
times be estimated as a product of a modal density and the
frequency bandwidth for that experiment, Af. The mode count
will not deviate very much from this estimate if the density
of modes is great enough or the bandwidth for the experiment
is wide enough so that the mode count estimate is at least
10 modes or so.

An important point to remember regarding the modes that
we'deal with in SEA is that they should be "similar". This
means that they are of the same mechanical type, that they
are excited in the same way, and that they are coupled to
adjacent systems in similar ways. Suppose that a subsystem
has two types of modes -- say, flexural and torsional, and
that this subsystem is joined into other subsystems in such
a way that we suspect that the energies of the flexural and
torsional modes are not equal. Then the mode count of
flexural and torsional modes should not be added to give
the modal count of the subsystem in that frequency band, but
in fact, two subsystems should be defined, each with its own
mode count.

The coupling loss factor (CLF) is the parameter that
governs the power flow from one subsystem to another. Not
surprisingly, it depends upon the general mechanical para-
meters of both subsystems to which it refers. Chapter 14
gives a discussion of experimental procedures which may be
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used to determine the CLF. The results of calculations of
CLF for a variety of system types -- both acoustical and
structural -- are also presented.

The chances are, however, that the designer who is
attemptin to use SEA to obtain response estimates, may not
find his particular subsystem "connection" in the group
represented in Chapter 14, simply because the odds are not
in his favor. Relatively few cases have been worked out in
sufficient detail to allow direct application, and the number
of possible connections between subsystems is very large.
Often, the cases that are known may be an acceptable approx-
imation for the purposes of estimation. The designer will
usually have to set up experiments to evaluate the CLF for
his situation, or use the references as a way of learning the
analytical techniques for a new theoretical derivation.

11.2 How Accurately Can (Must) We Know SEA Parameters?

The requirement for accuracy of the SEA parameters depends
upon the requirement for accuracy in response estimates. The
accuracy required in response estimates depends in turn upon
the use to be made of the estimate. Typical uses include
acoustical noise radiation, malfunction of electronic or
control components and structural fatigue.

The estimation of sound radiation usually involves
accuracy of the order of a few decibels (dB). This is
sufficient to determine the annoyance, reduction in personal
performance, or speech interference effects of noise. The
prediction of troublesome sound levels for any of these
criteria is the least demanding of all estimates of response,
since the form of response estimate is usually the product of
a ratio of loss factors and a ratio of modal counts. Thus,
a 10 percent uncertainty in the parameters could amount to
a 40 percent (or l..; dB) uncertainty in the estimate, even if
the response level of the "source" subsystem is known exactly.
Since there may be at least an uncertainty of a couple of
decibels in the "known" level, the uncertainty in the
radiated sound may be at least 3 dB or more.

The prediction of electronic malfunction or structural
fatigue requires much more accurate estimation of response.
For steady state vibration, a 1 dB change in vibration level
can amount to a 100 percent change in expected life. Thus,
the expected uncertainty in the estimate with only a 10 percent
uncertainty in the parameters is greater than desirable.
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On the other hand, current estimates -- even those based on
test data from similar systems such as the Mahaffey-Smith
procedure [2] have uncertainties that are at least as large
as 3 dB. In order to predict the life of a structure or
component reliably, the SEA parameters must be known within
a few percent and the response of the "source" subsystem
should be known to an accuracy of less than 0.5 dB. It is
unlikely that such estimation accuracy is achievable,
particularly with the mix of missions characteristic of
current aircraft.

Typically, we may expect an accuracy of our estimates of
modal count and loss factors to be about 10 percent, whether
theoretically or experimentally determined. Thus, a purely
theoretical prediction of structural fatigue or equipment
malfunction cannot be achieved by the use of SEA. On the
other hand, the SEA estimates are at least as accurate as
other procedures, and in addition, the estimates retain
functional dependence on the acoustical and structural para-
meters. Consequently, one can get an indication of how the
system might be changed to reduce the vibration or noise, and
increase component life.

11.3 How to Use This Section of the Report

Part I and Section I of Part II have discussed the basic
theory of SEA and the use of SEA to predict response for
engineering purposes. This section does not attempt to
explain SEA or its computational procedures. Its purpose
is to present methods for finding values of the SEA
parameters -- both theoretically and experimentally -- and to
give some values and formulas that have been found fr om
earlier work.

Even though the report is a collection of formulas,
graphs and diagrams in typical fashion, it will h found
advisable to read through each chapter, even though only part
of the chapter may be totally relevant to the problem at hand.
The reason is that there is overlap in nomenclature and
descriptions of experimental techniques between the various
procedures and expl.anations. Rather than make the text too
wordy with a great deal of repetition, the discussions have
been kept as brief as possible. The result, however, is
that a reading of only the material of direct interest may be
somewhat confusing unless the rest of the chapter up to that
point is read also.
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CHAPTER 12 THE DAMPING PARAMETER

12.0 Introduction

In this chapter, we provide methods, formulae and
data for the damping or dissipation parameter in SEA. This
is commonly measured by the "loss factor" n, but may be
known or expressed in a variety of other parameters. The
loss factor n is defined as the ratio of energy dissipated
per second to the average energy stored in the system.

1 11diss _Tildis

E11 ds - ds (12.0.1)= f Etot 27r Eto t

where T H diss is the energy dissipated per cycle of vibration
having period T = 1/f.

The loss factor can be related to a number of other
dissipation parameters that occur in vibration and wave
analysis. These factors and their relation to n are shown
in Table 12.1. This variety exists because of the importance
of dissipation mechanisms in many fields and the natural ways
of experimentally determining damping in each field. We
shall use the loss factor n for damping almost exclusively
in this chapter.

The information on damping is presented in four
paragraphs in this chapter. Paragraph 2.1 deals with experimental
techniques, which may be applied to the various configurations
discussed the later paragraphs. Paragraph 2.2 is concerned
with the damping that is naturally available in the material
from which the system is constructed. In paragraph 2.3, we
discuss damping in built-up structures, which are the kind
that interest us in the estimation of response in aerospace
applications. Finally, in Paragraph 2.4, we discuss the
construction and damping properties of various special add-
on treatments that are commercially available.
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12.1 Measurement of Damping

Although there is a good deal of tabular and
theoretical information available regarding the damping
of various structures, the most commonly used method of
determining damping is simply to measure it. Fortunately,
the accuracy to which the damping is required to be known
is not too great, and simple experimental methods can
readily achieve them.

There are two basic experimental strategies involved
in these measurements: steady-state and decay methods.
The steady-state methods are as follows:

a. Frequency response bandwidth for a single mode
of oscillation.

b. Frequency response irregularity of a multi-
degree-of-freedom system.

c. Measurement of input power.

Technique(a) is the well known "half-power bandwidth"
technique. If an experimental arrangement such as that
shown in Fig. 12.1 is employed, then a single resonant
response like that shown in Fig. 12.2 can usually be found.
The loss factor is tound from this plot as

= Af/f (12.1.1)

In order for the result (12.1.1) to be useful, we must be
able to single out a single resonance, which requires that
Af/6f<<l, where 6f is the average separation between
resonant modes of the structure. The ratio Af/6f is called
the "modal overlap" parameter. When it is large (greater
than 2 or 3 for instance), the frequency response curve
shown in Fig. 12.2 will not be realized because of the
interference between individual resonance curves. In this
instance, the response will have the appearance of the
curve shown in Fig. 12.3.

If 6fmax is the measured difference in frequency
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between two adjacent maxima in the response curve, then one
c~n demonstrate that the damping loss factor of the system
is given by [16]

r 0.4 <6fmax>/f (12.1.2)

where <6fmax,> is the average value of the separation for a
number of aajacent maxima and f is the center frequency of
this group of maxima. Parenthetically, we should note that
when nf/6f > 3, (conditions of high modal overlap) an in-
dividual response imaximum does not occur at a modal resonance
frequency but is the zesult of the in phase response of a
number of modes at the observation point.

Finally, damping can sometimes be inferred from a
measurement of input power to a system. Such an experimental
arrangement is shown in Fig. 12.4. A measurement of force
and acceleration (or velocity) at the driving point allows
one to determine Hin" Measuring the rms acceleration of the
structure allows the determination of <v2> = <a2>/42f 2 .

The loss factor is then given by

n = ]in/ M<v 2 >W (12.1.3)

where M is the mass of the structure.

In addition to the steady state methods, there are
transient methods for measurement of damping. These depend
on relations between the loss factor and various measures
of the rate of decay of a system as detailed in Table 12-1.
If one wishes to observe the decay of a single mode of the
system, then an arrangement like that shown in Fig. 12.5 may
be used. If a single mode is to be studied, then the
excitation may be a pure tone. The gate is used to cut-off
the excitation, and may also be used to drive the position
of the shaker armature out of contact with the structure.
Such a provision is useful if the shaker itself provides
enough structural damping to affect the measured decay rate.

If the modes are closely spaced so that 6f is not much
greater than nf, the abrupt termination of the excitation will
cause additional modes to be excited, and a decay curve like
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that shown in Fig. 12.6 will result. Such a result can be
avoided by using broader bandwidths of noise excitation that
encompass several modes of vibration, or by using a gating
function that is not so abrupt, but still fast enough not
to interfere with the decay process.

In the case of high modal overlap, the strategy for
damping measurement must change, and this is the case for
steady state measurement also. In this case, even a pure
tcne excites several modes, so that one may use several
shakers to simulate the proper generalized force for a given
mode. Such an approach is used for the lower modes of aircraft,
but is not very suitable for higher frequency panel type modes
of substructures. In the latter situation, one simply uses
a band of noise to ensure that many modes of vibration are
excited and decay together. In this case, an average loss
factor for the modal group is obtained.

The sensing of response is made with a microphone or
accelerometer, as appropriate for sound fields or structures.
A short time rms of the signal is taken (averaging time a
few milliseconds or less, depending on the frequency) and
the logarithm taken and the signal displayed. The decay
rate DR in dB/sec is found and the loss factor is found
from

DR = 27.3 fn . (12.1.4)

A storage oscilloscope is useful for this measurement because
a graphic level recorder, widely used in sound measurements,
is too slow for many structural decay experiments.

12.2 Damping Values for Materials [17]

Most aerospace structures are constructed from
aluminum alloys which have loss factors in the range from
0.002 to 0.005. Such damping values are generally smaller
than the measured damping of built-up structures by a
sizable factor. Thus, it is generally presumed that the
damping of real structures due to the metal itself is of
little consequence in comparison to the damping due to joints,
rivet contacts, and other similar features.
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In Fig. 12.7, we show a graph of values of loss factors
for various materials. Metals have an internal loss factor
ranging from 10-3 to 2 x 10-1. The larger values are not
encountered in aluminum alloys, but may be found in cast iron
and special alloys of manganese and copper. Polymer materials
have a similar range of loss factors, but are "softer" than
metals by a factor of 10 or more. Elastomeric materials are
a factor of 104 softer then metals, but have higher loss
factors than do either metals or polymers, ranging from 0.1
to about 5. Polymers and elastomers have great significance
in their role as components of add-on damping treatments,
which will be dealt with later on.

The damping provided by the material from which an aero-
space vehicle is constructed is so low compared to the values
-measured for built-up structures that we normally do not con-

sider this form of damping to be significant. However, add-
on damping treatments do have a high degree of material
damping in their polymeric or elastomeric elements, and con-
sequently, we are interested in the damping of such materials.
In particular, the damping provided by these materials is
frequency and temperature sensitive, and aerospace structures
are excited over broad frequency ranges and are exposed to
large changes in ambient temperature. This subject is well
covered by many sources, but it is worthwhile to give a
brief review of it here.

Polymeric materials undergo a transition in behavior in
terms of their static stiffness from a soft, rubbery (or
elastomeric) behavior to a harder, or glassy phase as a certain
temperature 0 is passed. The transition is not sharp, but
occurs gradually and is therefore, not a "normal" phase
transition like that which occurs for example in water
between its liquid and solid phases.

In addition, the dynamics of the material undergo a
transition in frequency at any temperature about the trans-
ition temperature of the material. That is, if the material
is in its "rubbery" state at room temperature (and zero-
frequency) then if the specimen is cycled quickly enough,
the material does not have sufficient time to accommodate,
and it acts dynamically as though it were in its moie rigid,
glassy form.

The time required for the polymer to "slip its bonds"
and behave in a rubbery fashion is called the relaxation time
for the material, denoted a0 . As a result of experimental
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studies on a variety of materials, the relaxation time for
polymers has been found to follow the relation

8.86 (0-O)
log a. = 6120+(0-) (12.2.1)

where 00 = Ot + 50K (expressed in degrees centigrade) and Ot
is the transition temperature mentioned above. Thus, polymeric
naterials have a dynamic stiffness characterized by a single
transition effect that is temperature dependent. The
relaxation time gets smaller as the temperature increases,
and the frequency of transition increases.

A diagram of the behavior of loss factor and modulus for
a rubber material is shown in Figure 12.8 [17]. The tendency
for the transition frequency fc to rise as the temperatures
is increased is clearly evident from the behavior of the
maximum in the loss factor function and the line of inflection
in the stiffness modulus. A great deal of data has been
collected for various polymer materials and is available in
standard reference works [17].

From the above discussion, it might be inferred that
polymers in the glassy state are not good damping compounds.
Generally, this is true although such materials may be used
occasionally where some damping is desirable. Nevertheless,
high modulus damping materials are desirable, particularly,
in their application is unconstrained layers. To achieve such
behavior an elastomer, such as polyvinyl chloride (PVC) is
loaded with a stiff filler material. This filler has two
important effects - it increases the overall rigidity of the
material and it amplifies the strain in regions near the filler
particles. Thus, the stiffness and damping of the combination
are both increased [18].

The mechanisms of damping in metals include thermal
conduction, grain boundary motion, molecular site transition,
and dislocation oscillations. At larger amplitudes, non-
linear effects such as plastic flow also occur. Because of the
complexity of mechanisms, but more importantly, because of the
wide range of activation energies for these processes, there
is little possibility of developing such simple functions as
that shown in Fig. 12.8 to illustrate the internal damping of
metals. Accordingly, the best we can do in this instance is
to refer to reference material in which values of material damp-
ing of various metals are tabulated [17].
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12.3 Damping of Built-Up Structures

We note above that aerospace structures that are made
up of aluminum alloy sheets, ribs, stringers and rivets will
under test display a loss factor of the ordear of 0.02, whereas
the loss factor of the metal itself is likely to be of the
order of 0.002. Although the vehicle designer has very little
control over the damping obtained this way, it is neverthe-
less useful to review what is known regarding the damping of
built-up structures.

It is reasonably well established that the increased
damping is due to the riveted joints of the structure. There
are at least two theories regarding the source of this
increased damping. One of these (19] assumes that the damp-
ing is due to surface slip and plastic deformation of the
contacting asperities of the overlapping surfaces. The
resulting damping is nonlinear. The damping in this case
should increase as the level of vibration increases.

The second theory assumes that the dissipation is due
to viscous flow in the region between the metal surfaces
along the riveted joints. If a liquid is present, such as
oil, this mechanism is fairly obvious - as the metal surfaces
vibrate, the gap changes its depth in a cyclic fashion. To
stay in contact, therefore, the liquid must flow in and out
of the narrow gap, and viscous dissipation is substantial.
Buc it turns out that even if no liquid is present, the flow
of air in and out of the gap is capable of dissipating
sufficient energy to account for the observed damping (20].
The obvious implication of this mechanism is that the damping
will be reduced as the air pressure is reduced and so, we
might expect less damping as altitude is increased.

The theory of damping by gas-pumping is rather complicated,
but we can summarize the results here. The formal expredsion
for the loss factor has only been found for high frequencies
(when the flexural wavelength on the plate is of the order of
a rivet spacing or less), but we may presume that the general
parameter dependence will likely apply to lower frequencies
also. The loss factor for the case in which the plate vibrates
and the attached beam is assumed stationary is [20]

Abc2YP H(0) (12.3.1)
16f 3f3A m K hc

ppp 9
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where

Ab = area of overlap

A = area of structural panelp

m = surface density of panel

K = radius of gyration of plate cross section

y = ratio of specific heats of gas

c = longitudinal wave speed in plate material

h = gap thickness

p = gas pressure

c = speed of sound in gas

The function H(O) is a measure of the ease of flow of the gas
within the gap and 0 =h/6 is the ratio of the gap depth to
the length parameter

c' =2 (v/w)

where v is the kinematic viscosity of the gas. A graph of
this function is presented in Fig. 12.9.

A comparison of the prediction according to Eq. (12.3.1)
and laboratory studies of the damping of a single beam riveted
to a plate is shown in Fig. 12.10. In this the plate is 1/64
inch thick and the attached beam is 1/4 x 1 x 17 inches. The
correspondence between the theoretical and measured values of
damping is impressive. In particular, the known tendency for
the observed value of damping to have a broad range of values
near 0.01 for built-up structures is supported by this data
and the calculations.

The results on air pumping are presented here because
this is practically the only theory that gives reasonable pre-
dictions of damping in riveted, aerospace type structures.
We do not wish to infer that this is a closed matter, however.
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Certainly there are many cases in other areas of acoustical
and vibration engineering in which the damping in built-up
structures is not due principally to this mechanism.

12.4 The Damping of Add-On Systems

Since the energy of vibration tends to be inversely
proportional to damping an increase of damping is frequently
desired to reduce vibration amplitudes. Since the "natural"
loss factor will be of the order of 0.01, we must increase
the damping so that the loss factor of the structure becomes
of the order of 0.1 in. order to have an appreciable effect
on the response. To achieve such a high level of damping,
however, one must usually resort to some kind of "add-on"
damping treatment. The performance of such treatments is the
subject of this section.

The most widely used add-on damping systems tre

(1) a free or unconstrained layer of damping material,
applied either by troweling, spraying, or in the
forma of tiles;

(2) a constrained layer of damping material, in the
form of a tape with foil and elastomeric adhesive,
or with the elastomer and constraining sheet applied
separately;

(3) seaced damping consisting of a spacing structure
and either a free or constrained layer of damping.

(4) A resonant damper designed to produce high damping
for a particular mode of vibration.

Diagrams of these various damping systems are shown in Chapter
9 and in the present chapter also.

Free (Unconstrained) Layer [21]. It is convenient to
examine results for the unconstrained and constrained treat-
ments separately, both with and without a spacing layer.
Some typical free layer configurations are shown in Fig., 12.11.
The base panel is "1", the elastomer layer is "3" and, when
present, the spacer layer is "2". The loss factor of this
composite is (assuming stiffness of the damping layer is
small compared to the structural stiffness ) [21]
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E h wH 2E3 h3w331
331 (12.4.1)

where

= loss factor of layer 3, discussed in
paragraph 12.2

E3 = Young's modulus of layer 3

E = Young's modulus of layer 1

h3 = thickness of layer 3

w3 = width of layer (take as unity when treatment
covers material)

H = distance between neutral axes of layers 1 and 331

I1  = moment of inertia of layer 1.

The interpretation of Eq. (12.4.1) is straightforward
and revealing. The first factor is a ratio of material
parameters only, and we note that r3E3/nEI is the relative
dissipation in the damping layer to the apparent dissipation
in the base structure for equal strains. The desirability
of combining "high" stiffness and loss factor in the damping
material is obvious from this expression. The second factor
is geometric - it is a ratio of the moment of inertia of the
damping layer to that of the base structures. It represents
the square of a strain amplification factor produced by the
geometry of the configuration. Thus, the purpose of the
spacing layer "2" is to increase the strain in the damping
layer and consequently obtain more damping.

As a practial matter, it is possible to increase the
damping by a factor of 10 or so by spacing the material away
from the structure. At higher frequencies this "gain" will
be less, because the spacing layer will tend to shear and
not stretch the damping layer as shown in Fig. 12.11. A
typical curve of loss factor achieved with a spacing
structure is shown in Fig. 12.12. The frequency and
temperature dependence of n will be that of n 3, as discussed
in paragraph 2.2.
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Constrained Layers. The use of a constraining layer
above the damping layer is another device to amplify strain in
the damping layer. In this instance, the constraining layer
augments shear in the damping material rather than elongation
as in spaced free layer damping. A comparison of constrained
layer and free layer distortions is shown in Fig. 12.13.
In aerospace applications, the damping is thin and also soft
compared to the base structure and the constraining layer.
In this circumstances a fairly complicated formula results
for the loss factor of the composite structure, which is best
presented graphically.

Fig. 12.14 shows the dependence of the composite loss
factor on the "shear parameter" X, a parameter that is
essentially inversely proportional to frequency. The general
formula for X is

X 33 ( 2 )  (12.4.2)h i3  2 K1 K2

where Ki = Eih. is the extensional stiffness of the layer,

Xb is the bending wavelength, G3 is shear modulus of the
damping layer (damping is Iae to shear in this configuration,
not to extension as in Eq. (12.4.1) and Fig. 12 .11) w is the
width of the damping layer (coverage is not necessarily com-
plete) and h3 is the thickness of the damping layer. Sub-
scripts correspond to the diagram in Fig, 12.15. Since

X b  1 /f 2

one has x ' f-1.

The optimal value of the shear parameter X is given
by

Xopt = (+Y) - (1+02)-  (12.4.3)
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where Y is the "structural parameter". The value of Y
for various configurations of interest is shown in Fig. 12.16.
The parameter $ is the loss factor for shear in the damping
material and is usually very close in the value to n3. The
maximum composite loss factor nmax is given by

_1
Tmax = Y [2+Y + 2/Xopt] . (12.4.4)

This expression is graphed in Fig. 12.17 as a function of
damping layer loss factor for various confiqurations
(structural parameters).

By combining the information in Figs. 12.14, 12.16, and
12.17, along with material damping information from
paragraph 12.2, the da.xiping of any constrained layer system
may be estimated. Constrained layers are preferred for aero-
space application because they tend to have less weight for
a given damping. This is demonstrated in Fig. 12.18, which
shows a comparison of damping versus added weight for free and
constrained layers. It is evident that as long as the
acceptable weight increase is less than 10 per cent, one
would achieve much more damping from the constrained layer.
The penalty that one pays for this performance is the narrow
frequency range of performance. That is, the constrained
layer treatment must be more closely "tuned" to the desired
frequency range.
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TABLE 12.1

COMPARISON OF COMMONLY USED DAMPING MEASURES

Dissipation Descriptor Symbol Units Relation to n

Loss Factor Ti

Quality Factor Q 1A

Critical Damping Ratio 1 -/2 n

Reverberation Time TR seconds 2.2/fn

Decay Rate DR dB/sec 27.3fn

Logarithmic Decrement 6 nepers/sec- rifn

Wave Attenuation* m nepers/m rfn/Cg

Mechanical Resistance** R newt-sec/m 27rfnM

Damping Bandwidth
(Half-Power) BW hertz fn

Imaginary Part of
Modulus Er + iEi  E. newt/m2  i/Er

Acoustical Ab-
sorption
Coefficient*** 8a- 8fV/cA

*c is group velocity for system in meters/sec.

**M is the system mass

***A is area of walls, V is room volume, c is speed of sound.
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CHAPTER 13. EVALUATING THE MODE COUNT

13.0 Introduction

The mode count is important in response prediction because
it tells us how many resonant modes are available to store
energy in the subsystem being studied. In Part I and
Section I of Part II, we have seen that this parameter enters
most of the equations for response, if not directly, then
indirectly through the consistency relation for the coupling
loss factors. Mode count also enters relations between modal
response and subsystem response in a frequency band containing
many modes.

When the mode count is experimentally determined, it can
enter the predictions directly, but when we determine it
theoretically, we are more likely to calculate the modal
density, the number of modes per unit frequency interval.
Indeed, we more often find the modal density appearing in
the theoretical expressions rather than the mode count. Al-
though the modal density is a simpler quantity to calculate,
we should not lose sight of the fact that it is the expected
mode count that is fundamental, and that systems that have
small mode count may still be modeled as SEA systems even
though the concept of modal density is inappropriate.

The mode count (or modal density) is the SEA parameter
that is generally the easiest to determine. In frequency
regions in which there are few modes and the modal density
may be difficult to calculate, a simple measurement on the
system (or a model of it) can often be made. In frequency
regions in which the modes are very dense, and it is dif-
ficult to resolve them excperimentally, one can usually make
an adequate theoretical estimate. Thus, by a combination of
experimental and calculational procedures, one can usually
determine the mode count to acceptable accuracy.

Division of the problem into regimes of sparse and dense
modal distribution is reminiscent of the situation with
regard to damping. In fact, it turns out to be true for all
the parameters, including coupling loss factors as well, that
different functional forms or different experimental methods
for their evaluation are required, depending on the density
of modes.

Preceding page blank
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In this chapter, we first discuss the measurement of mode
count and subsequently, the theoretical formulae for important
cases of acoustical spaces and structural subsystems.

13.1 Experimental Procedures for Determining Mode Count

The simplest a 1 most common set-up for finding mode count
is that shown in Fig. 13.1. The idea is simply to excite
the system with a pure tone, usually at a point, and observe
the response at a second point as the excitation frequency is
slowly swept over the band of interest. For the mechanical
structure in Fig. 13.1, the excitation is with a shaker
and response is measured by an accelerometer. If the system
is an acoustical system, excitation would be with a small loud-
speaker or horn driver and response would be measured with a
microphone.

Even though simple, this procedure can given erroneous or
incomplete results unless certain precautions are taken. To
make certain that as many modes as possible are excited; the
excitation should be near a free boundary for a structure or
a rigid wall for a sound field, since all the modes have anti-
nodes along such boundaries. To further enhance the likeli-
hood of all modes being excited and sensed, several source
and receiver locations should be chosen. If the graphs are
overlaid, modes that barely respond on one sweep will respond
more on another. Even if some of the modes are missed, the
estimates are only sensitive to the relative error in mode
count. Thus, if two out of twenty modes are missed, only a
1 dB error in the mode count will result. This error would
normally result ir a 1 dB error in a response prediction also.

Some other features of the experimental set up should be
mentioned. For example, the use of a logarithmic presentation
on the chart is preferable to a linear presentation. With
logarithmic output, modes that respond with small amplitude
are much more likely to be seen. Also, the sweep must be slow
enough so that two modes are not simultaneously excited and beat
against each other, or so that a mode that is decaying does not
beat with the non-resonant response at the shaker frequency.
Such beats will cause additional peaks on the chart which might
be mistaken for modal resonances.

The procedure just described works as long as the separation
between modes Sf is at least three times the bandwidth of a mode;
R/2 nf or
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rjf/26f<0.3. (13.1.1)

If the average modal separate 6f is too small, then too many
modes will be missed by the sine-sweep test. In this event,
an alternate, but less proven technique may be useful.

The alternate procedure relies upon the result that,
as shown in Part I, the average input power due to a force
L(t) in a band Af is [see Eq. (2.2.24)]

H.n = <L 2>t/4M6f (13.1.2)

and the mean square response is, therefore,

<v2>  ] in/ 2wfnM = <L2>t/8rf qM 26f (13.1.3)

Thus, if <v2> is measured for a known <L2> and n, one can
infer 6f. In this procedure, the difficulty is to control
the mean square force, as discussed in Chapter 12. Even if
one cannot precisely determine <L2>, the relative response
of the system in different bands can determine relative values
of 6f. Then if the exact value of 6f is known in a few bands,
it can be determined in all the bands.

13.2 Mode Counts of Acoustical Subsystems

The average frequency separation between modes in a one-
dimensional acoustical system of length k and sound speed c is

6f = c/2k (13.2.1)

This formula applies to any cylindrical space in which one-
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dimension is significantly greater than the other two and the
wavelength of sound is greater than the greatest cross-
dimension Zc:

X>2k c or fc <C/2c • (13.2.2)

The modal separation for a thin, flat acoustical space
of area A and perimeter P is given by

6f = 2fffA/c 2 + P/c (13.2.3)

This formula is valid as long as the wavelength of sound is
greater than twice the depth RD of the space

X>2kD or f<c/2%D  (13.2.4)

The modal separation for a three-dimensional space of
volume V, surface area A and total edge length k is given by

1/6f = 4mf 2V/c3 + 7rfA/2c 2 + k/8c (13.2.5)

These formulas and the cases they relate to are shown in
Figs. 13.2, 13.3 and 13.4. Generally these results are
adequate to supply good estimates of mode count for sub-
systems or elements that have standing sound waves as the
energy storage mechanism.

13.3 Flat Structures

The simplest structure that we can write the modal density
for is the homogeneous flat panel of area A
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6f= hc,/y3 A (13.3.1)

where h is the thickness of the panel cross section and c£
is the longitudinal wavespeed in the panel material. If the
material is steel, aluminum or glass, then

c = 17,000 ft/sec

and if h is expressed in ft, one has

6f = h(ft) x 104/A(ft2 ) (13.3.2)

If the panel is not homogeneous, but is of a sandwich or
other layered construction, a similar but more complicated
relation can be given. The wave velocity c must be known as
a function of frequency w=2wf. It is then substituted into

c I[ c dc 1 -%d
6f = 1 (13.3.3)

For example, it often happens for such structures that the
wave speed increases as a power of the frequency

c = B Wn (13.3.4)

in which case

f = B2. 2n -I6A2n (l-n)-1  (13.3.5)

A
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When n = 0 (acoustical case, Figure 13.3), 6f x, 1/f as found
in Equation (13.2.3). When n = 1/2 (homogeneous plate), then
6f = const., as found in Eq. (13.3.1). For other con-
structions, a dynamical analysis of the panel construction
must be carried out to determine c .

In some cases, a plate will be orthotropic, i.e.,
stiffer along one direction than the other, as shown in Fig. 13.5.
If these two directions are labelled "1" and "2", the modal
density n(f) = 1/6f is in effect an average value between
isotropic plates of the two stiffnesses

1 {A1 ( dc, 1 _ dc 22/ f = (1 2 --
C12 1C 2 2

(13.3.6)

or, if the construction is such that c1 ,c2  n , we have

=1 {1+
1/6f = wA(l-n) + ---c12  c22  (13.3.7)

where cI and c2 are the wavespeeds in the two principal
directions. Obviously if cI = c2, we revert to Eq. (13.3.5).

13.4 Mode Count of Curved Structures

Since most aerospace structures consist of complete or
segments of curved shells, the effect of curvature on mode
count of structures is of great significance. Although a
fair amount of work has been done on such structures, we are
not able to write simple formulas for the mode count in all
instances. In this paragraph we provide some of the available
results that are of greatest interest in the present context.

Circular Cylinders. The modal density of a circular
cylinder may be considered a variation of the modal density of
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a flat structure of the same area and construction (homo-
geneous, layered, etc.) but modified to the account of the
effects of curvature. The form of the modal density is
shown in Fig. 13.6. The characteristic frequency that
separates the high frequency flat plate behavior from low
frequency cylinder behavior is the so-called ring frequency
fring' defined by

fr =c/27a (13.4.1)
ring /2a

where ck is the longitudinal wavespeed introduced in
paragraphs 3.3 and a is the radius of curvature of the
cylinder.

Using results from Szechenyi [22] we can present simple
curve-fitting formulas for the modal density, which are as
follows:

6f(flat plate) - f f < 0.5
6f(cylinder) rg rring ring

= 1.4 f 0.5 < f <0.8

ring ring

-0.8 n1 IF cos C1.75 (fring) ]
F2

2
F os [1.75 F2 (ng

>0.8
ring

(13.4.2)
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where the quantity F represents the band limits over which
the average is taken from

f

ring

to

1 f

ring

Thus, F = 1.222 for a 1/3 octave band and 1.414 for an octave
band.

Doubly Curved Shells. Occasionally a shell or a segment
of a shell will be in the form of a doubly curved surface, as
shown in Fig. 13.7. A torus is an example'of such a shell.
Torodial sections are frequently used to join a cylinder with
a spherical cap, for example. Suppose the shell has area A,
longitudinal wavespeed ck, and cross-sectional radius of
gyration K. Then if R, and R2 are the two principal radii
of curvature, we can define two ring frequencies

c£ c
fr - 2 z fr - 2 (13.4.3)
ri 2rR 1  r2 27rR 2

and we arbitrarily assume R2 > R1 so that f < frl"

With this hypothesis, Wilkinson [23] has computed the
modal densities for a doubly curved shallow shell.

f < fr2 < frl; n(f) = 1/6 = 0. (13.4.4)

There are no resonant modes in this frequency regime. In
the frequency range "between" the two ring frequencies,
fr2 4 f < frl
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3

6f(flat plate) _ /2 f F (V2
6f(shell) - (f _fr) 2 (f rfr2

rl ri r2~

(13.4.5)

and in the frequency range above the two ring frequencies

fr2 <frl < f

6f(flat plate) _ 2 f 2F(?T/2, i/)
6f(shell) (f2 f 2 ) -2( - r )  (f+f rl (f- f r2

ri ri r2

(13.4.6)

where K = (f+fr10 (f-fr2) /{2f(frl-fr2)} ,and F(7r/2, )

is the elliptic integral of the first kind, defined by [24]

7r/2

F(r/2, ) = (1- 2 sin2 t) - dt. (13.4.7)

When < 1 this can be expressed in the series [24]

~1

2 _ 2- 2n 2n' =r( I) (n ! )  (13.4.8)

2 2E r (1) (n! ) 3
n=O

When f >> frl' then ki >> 1 and Eq. (13.4.6) becomes

late) = 1 (13.4.9)
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Thus, the modal density again becomes equal to that of a flat
plate of equal area at high frequencies and short wavelengths.

Two interesting special cases can be derived from the
relations (13.4.4, 5, 6). If R2  and f r2 4 0, the shell
modal density becomes for f < f

6f(flat plate) /2 f F[Tr/2,'/(f+f )/2fr]

f_ r (13.4.2')
6f(cylinder) 7 (f2 -f2 )2 f

r r

and for f > fr"

6f(flat plate) 2 f2F[/22fr/(f+fr (13.4.2)-- (1.-2"
Sf(cylinder) T (f2-f2) 2 (f+f ) 2f 2

r r r

On the other hand, Rj=R2 for a spherical cap, and the
middle range vanishes to give, for f < f

6f(flat plate) 0 (13.4.10)
Sf (sphere)

and for f > f r

22

6f (flat plate) 2f F(,0) f2 (13.4.11)
6f (sphere) iT(f2 _f2) 2 f2_f2

r r

For a sphere, therefore, the modal density approaches its
asymptotic flat plate value very quickly above the ring
frequency and there is a total depletion of modes below the
ring frequency.

Conical Shells and Shells of Varying Radius of Curvature.
A large number of structural shells of aerospace interest are
sections of surfaces of revolution in which the curvature varies
along a coordinate. It is possible to develop a general theory
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for the mode shapes and resonant frequencies for such shells
as recently reported by Pierce [25] and Germogenova [26].

When the radius of curvature increases linearly along
the axial coordinate, the shell is a cone. It is not
possible to find a general expression for the modal density
for these structures, but as shown in Chapter 15, it is
possible to find the mode count for particular situations.

Although general formulas for mode count are not avail-
able for shells of revolution, many situations can be
worked out to a satisfactory degree of accuracy by following
the procedures in the references.

13.5 One-Dimensional Structure

A commonly encountered aerospace structure is the one-
dimensional beam, stringer, or frame member. Although the
one-dimensional geometry tends to simplify the mode count
prediction, the dynamics of such structures can be rather
complex. A simple beam of rectangular or circular cross
section has separate propagation modes for flexural, torsional,
and longitudinal wave propagation. However, channel or hat-
section stringer or frame has coupling between these motions
so that the actual vibrational modes combine the "pure" wave
types.

Fortunately, the additive properties of mode count
simplifies the process of prediction. We may calculate mode
counts on the hypothesis that the coupling does not occur and
then add the mode counts for the pure modes to obtain our
estimate for the mixed motions when the geometry of the beam
cross-section or end conditions are such that we expect such
coupling to be important.

The average modal separation 6f of a one-dimensional
system of length k and phase speed c (w) is given by

n(f) /6f (13.5.1)

c c d

In the case of longitudinal, the phase speed c is independent
of frequency:
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l/af(long'l) = 2/c£; c, =- (13.5.2)

Where E is the Young's modulus and p is the lineal
density of the beam. In the case of torsional waves

i/6f(torsional) =2t/ct ct=Cs C'K (13.5.3)

where J is the moment of rigidity for the cross-section in
question, o is the radius of gyration about the c.g. of the

cross-section, A is the area of the cross-section of the
beam, and cs is the speed ofdiear waves in the material. The
quantity J for various cross-sections of interest may be
found in references on the strength of materials.

The bending wave speed is generally dispersive, as it
is in plates. Again, if c, 'W n, then

2 Z
1/6f(flexural) = - (1-n) (13.5.4)ci,

which is k/c for n = 1/2. For more complex cross-sectional
shapes, the more general formula (13.5.1) must be used.
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CHAPTER 14 EVALUATING COUPLING LOSS FACTORS

14.0 Introduction

This chapter is concerned with presenting known values
of the coupling loss factor (CLF) and methods for obtaining
the CLF. In contrast to modal densities and damping, para-
meters that are well known outside the context of SEA, the
coupling loss factor is uniquely associated with SEA. As
we have seen in Part I and Part II, Section I, however, it
is sometimes possible to relate the CLF to parameters (such
as structural input impedances) that may have been evaluated
for other purposes.

There are a variety of ways that the CLF may enter a
calculation - as a "radiation resistance", as a ratio of
power flow to stored energy, or as a frequency average over
junction impedance functions. In addition, there is a variety
of acoustical and mechanical systems that are of interest in
aerospace applications that may be joined together. This
richness of possibilities makes it very difficult to give an
exhaustive listing of CLF values that will cover all potential
cases of interest. Nevertheless, we present here known CLF
data on some systems of interest and indicate wherever
possible how information on other systems may be generated
either by experiment or calculation.

The chapter is organized by the kinds of subsystems
that are in contact with each other. Thus, we begin with
coupling between two acoustical spaces. In this case, it
happens that there is a great deal of experi.mental and
theoretical data available on the CLF, or more precisely,
a related parameter, the transmission loss. The second
caLcqory of coupled systems is that in which one is structural
and the other is a sound field. In this case, the coupling
loss factor is related to the radiation resistance of the
structure, for which there is a fair amount of information
in the literature, some of which is experimental, but
most is theoretical.

The final paragraph of the chapter is concerned with
structure-structure interactions. These interactions are
the most difficult for several reasons. First, experiments
on such interaction are difficult to carry out and the
number of reported results is fairly small. Second, the
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kinds of motion may be quite complex for some structures and
the "impedances" may be matrix quantities. Third, the formal
derivation of CLF values for these cases can be extremely
complicated, so that theoretical results, while conceivable,
may require such extensive analyses that we are reluctant
to do the work, particularly in a preliminary design situation.

14.1 Coupling Between Acoustical Spaces

In acoustical spaces, the response is measured by the
m.s. pressure in a band, <p2>. If the dimensions of the
space (call it subsystem 1) are greater than an acoustical
wavelength, then the power incident upon a wall of A is

w

inc = <p2> A/4pc (14.1.1)

where p is the density of air and c is the speed of sound.
The transmissibility of the wall is defined as

H trans /n inc = 4pc ntrans <p2> Aw (14.1.2)

where Rtrans is the power transmitted through the wsll into
the receiving acoustical space.

The transmitted power can be related to the CLF since,
in the absence of flow back from the receiving system (sub-
system 2) to the "source" cavity (subsystem 1), an
assumption that is made in most acoustical transmission
studies, one may also write

trans = 12E1 = 2 fn12 <p2> Vl/pC 2  (14.1.3)
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and, consequently, comparing (14.1.2) and (14.1.3), we can
make the association:

"l2 = c Aw/8wfV 1  
(14.1.4)

All of the voluminous data on transmission loss (TL),

TL E - 10 log T (14.1.5)

becomes, therefore, a source of information on the coupling
loss factor between acoustical spaces (27].

Unfortunately, as large as this data base is, it is
primarily oriented to building constructions (gypsum board,
brick, plaster, etc.) and relatively little data by com-
parison is available for aerospace constructions. Also,
building constructions tend to be formed from flat panels so
that the curved geometries characteristic of aerospace con-
struction are not well represented. For these reasons, it
will often be necessary to determine n1 experimentally for
systems representative of aerospace configurations.

Experimental Determination of CLF for Acoustical
Spaces. The experimental procedure for finding n12 is to
excite one of the cavities with a source of sound as shown
in Fig. 14.1 (usually the loudspeaker is driven by a band
of noise) and to infer T from the m.s. pressure in the two
spaces. Since the transmitted sound power into cavity 2 must
be dissipated there, one has

<P2>V 2
2- 2ifn 2  (14.1.51,

trans pc 2 2

where is the loss factor and V2 is the volume of cavity 2.
This parameter is usually measured by a decay rate experiment
of the kind discussed in Chapter 12, using the relation

DR (dB/sec) = 27.3 fn2 , (14.1.6)
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Using (14.1.5), (14.1.2) and (14.1.4), we then obtain

<P2> 8rfV 87rfV
22 (14.1.7)

A<p2> 2 2 C

or,

0 log n12 = Lp2 LPl +0 log n2 + 10 log V2/V1

(14.1.8)

where, of course, L is the sound pressure level. Thus, a
simple measurement gf sound pressure levels in the cavities
and of decay rate of the receiving space is sufficient to
determine the CLF. One should be careful, however, that the
difference in sound pressure level L -L should be at least
10 dB to ensure that the assumption that all the transmitted
power is dissipated in the receiving space is satisfied.

Data on CLF for Aerospace Structures. The transmission
loss of a thin flat steel panel has been measured afia cal-
culated by Crocker [281 whose data is shown in Fig. 14.2.
A flat aluminum structure has a TL minimum at the critical
frequency

f= 12,500/h (mm) (14.1.9)c

where h is the thickness of the panel in millimeters. For
frequencies an octave or more below fc, the TL is well
approximated by the so-called "mass law" formula [29]

TLM = 20 log f + 20 log W - 33 (14.1.10)

wiere f is the frequency in hertz and W is the mass density
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of the panel in lb/ft2 . Since aerospace structures are fairly
thin, we are usually interested in the frequency range well
below fc and this mass law formula will give an acceptable
approximation for TL.

Eq. (14.1.10) is derived from the non-resonant trans-
missibility of the panel, but one must sometimes include a
resonant transmissibility, particularly if the structure has
many reinforcing ribs or frames. The resonant transmissibility
is given by

2 c V1 02
2 c- ra (14.1.11)

res IT m2  Aw  nws

where arad is the radiation efficiency of the structure, m.

is the mass per unit area of the structure (wall) and nw is
its loss factor. The parameter arad = Rrad/PCAw, and Rrad is
evaluated from data presented in paragraph 14.2.

For frequencies above the critical frequency, the trans-
mission loss (or coupling loss factor) depends on the damping
of the wall nw in the form [30)

TL(f>fc)=TLM + 10 log w + 10 log (- - 1)+3
c

(14.1.12)

where TLM is given by Eq. (14.1.10) and nw is to be determined
by the methods of Chapter 12. Since most aerospace panels
have a fairly high critical frequency, we are not ordinarily
interested in the condition f > fc" On the other hand, light-
weight sandwich constructions used in fatigue resistant designs
may have a much lower critical frequency. For such con-
structions

f = 7000/t (mm) (14.1.13)
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where t is the total thickness of the aluminum sandwich in
mm. Thus, an 8 mm thick sandwich will have a critical
frequency of 900 Hz. We may well be concerned with finding
the CLF in frequency bands up to 4 or 5 kHz, in which case
we would have to use Eq. (14.1.12).

The relations (14.1.10) and (14.1.12) apply an octave
or so away from f = fc To "fill in" the range f = fc, a
transition curve like that appearing in the data shown in
Fig. 14.2 can be used. The resulting curve will usually
provide an estimate of TL that is accurate enough for
estimation purposes.

Cylindrical Structures. Sound transmission through
cylindrical structures is complicated b an additional
frequency parameter, the ring frequency

= c i/2ira (14.1.14)

where a is the radius of the cylinder. As noted in Chapter 13,
above this frequency the cylinder acts as a flat plate, so
that the flat plate CLF formulas apply. At and below fr,
membrane stiffness effects cause changes in the transmission
loss, as may be seen in the experimental data shown in Fig.
14.3. Deviations from the prediction according to Eq.
(14.1.10) and the data at and below fr may be taken as
representative of the effect of the ring frequency on TL. [22].
Near fr' the TL is reduced 2 to 3 dB and below fr the TL is
increased by 3 to 4 dB as compared to flat plate values.

14.2 Coupling Between Structures and Acoustical Spaces

The CLF between a structure and a sound field is most
simply expressed by the average radiation resistance of the
structure interacting with an infinite space. This is an
acceptable approximation when the wavelength of sound is a
third or less a typical dimension of the cavity. At lower
frequencies, a mode-to-mode CLF may have to be developed.

When the radiation resistance of the structure is a
suitable measure, the CLF between the structure and the
acoustical cavity, nsa' is given by
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nsa R rad/Ms (14.2.1)

where Ms is the mass of the structure. This radiation
resistance Rrad has been calculated for several structural
systems of interest in aerospace applications. The coupling
from the acoustical space to the structure can be found from
the consistency relation,

nas = nsa Ns/Na (14.2.2)

where N. and Na are mode counts for the structure and the
acoustical space respectively, as determined in Chapter 13.

Radiation from Finite Flat Panels. The radiation re-
sistance of one side of a flat panel of area Ap and perimeter
P is given by [31)

Rd = pCA tP 2sin( ) (f < f

= pcA p{l-f c/f)- 1 (f > f ) (14.2.3)

where f is the critical frequency given in Eqs. (14.1.9) and
(14.1.13[ and X. is the wavelength of sound at the critical
frequency. The parameter 0 is related to edge fixation. If
the edges are simple supports, a = 1; if they are clamped
a = 2. Usually these values will bracket more realistic
mounting conditions, for which one may use a = Vp2. This
formula applies at frequencies on octave or more above the
fundamental panel resonance frequency.

Radiation from a Support on the Panel. When a
supporting member such as a stringer or frame is attached to
the panel, the radiation at frequencies below the critical
frequency is increased. The amount of increase depends on
the stiffness of the stiffener and its lineal mass. The
increment in radiation resistance is given by
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4XL f
cR pcA D() (14.2.4)

rad = pCp f2A
p

where L is the length of the stiffener and D is a
function that depends on the lineal mass m of the stiffener
and the mass per unit area of the panel ms according to the
parameter

M° = 2 m/ cm . (14.2.5)

We have graphed 10 log D(f/fc) in Fig. 14.4. The plot in this
Figure assumes that the critical frequency of the beam is
0.0lfc, the critical frequency of the panel. For aerospace
structures, this would mean a beam critical frequency of
100 Hz or so, a reasonable value for most constructions.

Radiation Resistance of Cylinders. The radiation
resistance of a cylinder of area Ac above the critical
frequency fc is the same as for a lat structure above fc,
and is given by Eq. (14.2.3)

-2

R =PAc(l-fc/f) 2;f > f (14.2.6)rad c c c (426

As noted earlier, the critical frequency of aerospace
structural panels is usually well above the ring frequency.
In this event, the structure behaves as a flat plate in the
frequency range fR < f < fc and the following radiation
resistance formula applies:

Rr=pCA { 21rR+ sin -I f  ;
Ac

f < f < fc (14.2.7)
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where R is the radius of the cylinder and L is the
length of any stiffeners on the cylinder. The parameter 0
relates to fixation of the supports in the same way that it
did in Eq. (14.2.3). [Note that if the critical frequency
is less than the ring frequency (a situation that can occur
for equipment pods) than this range corresponds to
f < f< f and Eq. (14.2.6) applies.]
cR

When fr < fc and f < fr, we can write the following
expression for the radiation resistance of a cylinder (22]

V/3pcA f
R c R (14.2.8)rad 2a fR f

where

= 12.5 for f < 0.5
RR

f

a 3.6 f for 0.5 fR < f < 0.8 fR
RRR

Using Eqs. (14.2.6, 7, 8), one can estimate the coupling of
the curved surface of a cylinder with either an internal or
external sound field. The radiation resistance of the flat
ends of the cylinder may be estimated from Eqs. (14.2, 3, 4).

Departure from Simplified Results at Low Frequencies-.
As noted in Chapter 12, the mode count in frequency bands is
reduced as one lowers the frequency of interest, particularly
if proportional bandwidth filters are used. The result is
that modes have less of a chance of "overlapping" each
other and the coupling between systems shows substantial
variations. Under these circumstances, one may have to cal-
culate mode-to-mode values of CLF. There are not many
instances for which this has been done, but there is work by
Fahy (32, 33] on such coupling between the vibration of
structures and the acoustical modes of the contained fluid.
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The frequency below which the simplified values of
radiation resistance presented above may be in error has
been estimated for the cases of the coupling between a wall
of a box-like enclosure and the enclosed fluid. If the
panel has thickness h and dimensions a x b and the box
has dimensions a x b x c, then the limiting frequency fZ is
found from [321

2/7
fz=f c[4/2. 2(ns+na)(a+b) (abc) f4 (Af/f)] (14.2.9)

where fc is given by Eq. (14.1.9) and (14.1.10), na and ns
are the loss factors of the acoustical space and the structure
respectively, and Af is the bandwidth in which the data is
taken. Normally such data is taken in constant percentage bands
so that Af/f is a known constant.

The limiting frequency for cylindrical structures differs
from that of flat structures because of the increased im-
portance of membrane stresses. The expression for fZ in
this instance is given by [21)

f=fr [c2/72£a2(na+ns)f3(Af/f)] (14.2.10)

where £ is the length of the cylinder, a is its radius,
and f is the ring frequency given in Ea. (14.1.14). The
formulas in (14.2.9) and (14.2.10) are designed to be con-
servative, and the actual departures from predictions based
on the CLF formulas of paragraph 14.2 may well occur at an
octave or so lower than ft as predicted by these formulas.

In the range f < fZ, the calculation of CLF between the
sound field and the structure becomes very complex and highly
specialized to the geometry and structural details. The
references should be consulted for details on the computational
procedures to be followed in such cases.

14.3 Coupling Between Structural Subsystems

The most common interface between subsystems in flight
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vehicles is in the form of a mechanical connection between
the structural elements. The number of possible subsystems
to be connected together (cylinders, plates, cones, beams,
etc.) and the variety of kinds of connectors (rivet lines,
brackets, welds, etc.) results in quite a large array of
structural connections of possible interest to the designer.
In this section, we quote results from various theoretical
and experimental studies of the coupling loss factor for
structures. We also indicate how some of the existing
results might be extended to cover other cases of interest.

The first system to be discussed is a structural beam
(stringer or frame) that separates two panels. Since thebeam will reflect some of the flexural wave energy inc,.dent
on it and transmit the rest, one can define a trans-
missibility T for the wave energy in the same way that such
a parameter was introduced for the transmission between two
acoustical spaces. If the mechanical power incident on one
side of a beam or length L is Hinc and the power transmittedto the second side of the beam is Utrans the transmissibility

2- 11 trans /H inc  (14.3.1)

is related to the coupling loss factor n12 (where the source
side is "1" and the receiving side is "2") by the relation

cL

n12 9 . (14.3.2)
2n2fA1

Most measurements and calculations of transmission of
vibrational energy are designed to evaluate T, from which

n12 may be inferred.

Experimental Methods for Finding n12. There are
three principles that may be applied in the measurement of
the coupling loss factor for structural connections.

(1) The receiving system may be damped sufficiently
so that very little of the energy received by it
will "return" to junction. Alternately, one may
say that n2 >> nI +nl2' In this event, the
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apparent damping of subsystem "1" will be
nl+nl2. If nI can be found separately (estimated,
measured by "clamping" subsystem "2", etc.) then

n12 can also be determined.

(2) The receiving system is very heavily damped at its
boundaries and a steady state excitation is applied
to system 1. The mean squared velocity of system
"2" is a measure of the transmitted power and the

mean squared velocity of system 1 measures the
power incident on the boundary. The experiment
determines T, from which n12 may be found in
accordance with Eq. (14.3.

(3) The receiving system is sufficiently damped so
that its modal energy E2 /N2 is appreciably less
than the modal energy or the source structure,
El/N1, but the damping is not so great as in
cases (1) and (2). In this circumstance, the
vibration of subsystem "2" is almost directly
proportional to the value of n12.

As an example of case (1) above, consider the experimental
set-up shown in Fig. 14.5 [34]. In this experiment, the damp-
ing of plate 1 is measured by a decay rate experiment before
attachment to plate number 2. The results are plotted as i1l.
The damping of plate 2 is increased as much as possible and
plate 1 is connected to it in the desired way. The new loss
factor n is also plotted and for this situation is equal to

71 = n12 + TI  . (14.3.3)

Thus by taking the difference between n and nI , the CLF is
found. The CLF has also been interpreted as a transmissibility
in Fig. 14.5 according to Eq. (14.3.2). A comparison with the
theoretical value of Tth is shown in this figure.

'The transmissibility as measured in case (2) above has
been found experimentally for beam structures by Heckl [35].
A typical set-up is shown in Fig. 14.6. The source section
has no applied damping, the receiving section is heavily
damped by a "wedge" of material. The excitation is with a
shaker (shown as F in the drawing). The change in velocity
level across the beam
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AL = 10 log <v2> / <v2> (14.3.4)

is related to the transmissibility

= 2 <v2> / <v2 > (14..5)
2

where again plate 1 is the source and plate 2 is the receiver.

Finally, one can determine n12 from steady state
response measurements when the receiving system is not so
heavily damped as in cases (1) and (2). The damping must be
high enough so that the modal energy of the receiving system
is appreciably below that of the directly excited system.The steady state response of the indirectly excited
structure <v~> is found in terms of the response <V2> of thedirectly excited system, as follows

M <v2> M <v2> "212 - 1.1 (14.3.6)
N2  N1  n2+n21

The errors using this method of determining n2l tend to be
rather high, so that the equation is a better estimator of
response from a knowledge of the parameters than it is for
estimating parameters when the response levels are known.

Transmission Through Plate Junctions. Theoretical
formulas and data are available for panels joined along
lines, either by a beam, a framing member, or by a simple
bend. Theoretical deviations for line connections between
plates are fairly complicated, particularly when the bending
and torsional rigidity of the beam must be included. Some
of the results are presented here, the background information
necessary to make calculations for other systems may be
found in the references.

Two plates joined at right angles were studied by Lyon
and Eichler [34]. The configuration is shown in Fig. 14.7.
The coupling has simple theoretical values for plates of
equal thickness and also when one plate is much stiffer than
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the other. The expressions for the transmissibility from
the semi--infinite plate no. 1 to the iifinite plate no. 2
are

= 8/27 (plates of equal stiffness)

= D1/D2 (plate 2 much stiffer than plate 1)

(14.3.7)

where D = mpK2C2 is the bending rigidity of each plate. For
homogeneous plates, D N h3, so that the second relation above
is satisfied if hl h2/2. A comparison between theoretical
and experimental results for such a junction may be seen in
Fig. 14.5.

The transmission from one panel to another through a
reinforcing beam has been studied by Heckl (35). If the
panels are of equal thickness, then the transmissibility may
be well approximated by

Kcm m mcf
T = 2 1p +64 -p f2 (14.3.8)c fBmB wmB /13

where K is the radius of gyration of the plate cross-section,
cp is the longitudinal wave speed in the plate material, m_
is the wass per unit area of the plate, m is the mass per
unit length of the beam, cfp and cfB are ilexural wave speeds
for the plate and the beam respectively. A comparison between
theoretical and experimental results for a simple plate-beam
combination is shown in Fig. 14.6.

In addition to these theoretical results, a number of
more complicated systems have been studied experimentally by
Ungar, et al. [36].

Junctions of Panels and Beams. Coupling loss factors
have been found in a few cases for beams which connect to
plates, and these results are presented below. In general,
however, such results are sparse and one will likely be

140



forced to calculate the coupling loss factor. Procedures
for such calculations using junction impedances are dis-
cussed later in this section.

If a beam is cantilevered to a plate as shown in
Fig. 14.8, the CLF may be expressed in terms of junction
moment impedances [34]

b= (2PbcbKbSb)2 (WMb) Re(Zp) IZ /(Zp+Z b )1 2

bp (2 bcb b b)b' p p b

(14.3.9)

where Z and Zb are moment impedances of an infinite plate
and a semi-infinite beam respectively, given by

Z= PbCSbK 2 fK (l+i)/w (14.3.10)b= bb bbfb

Z = W(l-ir)/16p K 2 C 2 • (14.3.11)p spp

When the plate and beam are of equal thickness and unconstructed
of the same material, this simplifies considerably to become

"bp w/49 (14.3.12)

where w is the beam width and Z is its length.

Another imporant situation is for a beam that joins
the edge of a plate, as shown in Fig. (14.9). In this case,
the CLF can again be found from junction impedances but the
impedance functions are matrices since both moment and trans-
verse force cabse energy transfer at the boundary. The
formulas are not presented here because of their complexity,
but a comparison of theoretical and experimental results for
1 x 1/16 in. beam connected to a 1/16 in. thick plate is shown
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in Fig. 14.10. When the axis of the beam is perpendicular
to the line of the plate edge, then there is theoretically
no coupling between flexural and torsional motions of the
beam. For such a situation, torsional and flexural motions
are decoupled. The total coupling loss factor is a
weighted average of the coupling loss factors for flexural
and torsional wave types,

flex .. .tors.

nbp = 6fb(nbp /Sfflex+nbp /6ftors) (14.3.13)

where 6fflex and 6tors are the average frequency spacings
between flexural and torsional modes respectively and

6 = (1/6ffl+i/ft ) (14.3.14)

is the average frequency spacing for all mode types.

Junction Impedances and Coupling Loss Factor. As we
have seen, junction impedances play an important part in the
evaluation of the coupling loss factor, particularly when
the coupling is concentrated over a small area of the plate.
Several authors have published tables of these junction
impedances. The reader should refer to the publications for
junction impedance formulas and data [37].
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SECTION III - EXAMPLE OF RESPONSE ESTIMATION

by Huw G. Davies

CHAPTER 15 VIBRATION OF A REENTRY VEHICLE

15.0 Introduction

This chapter is intended to demonstrate the application of
SEA to a specific problem in response estimation. We shall
discuss the problem in some detail, and from a variety of aspects.
Much of the work in this part is taken from work by J. Manning
and others on a reentry vehicle.

The reentry vehicle used in this example is sketched in Fig. 15.1.
We shall be concerned here with the vibration of the shell of the
vehicle caused by high-speed turbulent-boundary-layer flow, and
with the transmission of vibration from the shell to equipment
mounted on the upper instrument shelf.

15.1 Modeling the Vehicle

15.1.1 Low Frequency Model of the Vehicle

For very low frequencies (less than 50 Hz in the present
case) the vibration of the vehicle is dominated by large
scale flexural modes of the whole vehicle. The vehicle thus
behaves as a free-free beam of rather complicated cross-
section. The numbers of such flexural modes in any third
octave band below 50 Hz is small. The modal density of the
skin panel flexural modes is also small. Thus the usual
techniques of vibration analysis at low frequencies may be
used and no advantage is gained from the SEA approach at
these frequencies. The analysis techniques required have
been described in Appendix VIII of Ref. 38, for example, and
we shall not review those techniques here.

The vibration prediction techniques just mentioned become
cumbersome when many modes contribute to the vibration level.
The transition region in this instance is about 100 Hz, third-
octave bands above this frequency have more than two
resonant flexural skin modes. (The modal densities involved
are discussed later.) The techniques of SEA are thus
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applicable above this frequency. In the remainder of this
Part we shall consider only vibration at frequencies above
100 Hz.

15.1.2 High Frequency Model

High speed turbulent flow over the surface of the re-
entry vehicle generates high frequency vibration of the skin.
This vibration is in turn transmitted to the various com-
ponents carried within the vehicle. Our prediction of the
density of resonant skin modes of the vehicle shows that
there are many such resonant modes in all the third octave
bands above, say, 100 Hz. The techniques of SEA are thus
useful in predicting vibration levels of the skin and of the
interior components in this frequency range. In what follows
we shall be concerned solely with this frequency range. (The
term 'low frequencies' will refer to the lower part of this
range, that is to say, from 100 to 1000 Hz, in the remainder
of this chapter).

As indicated above, we shall restrict attention here to
the transmission of vibration from the vehicle skin to the
upper instrument shelf shown in Fig. 15.1, and to the sub-
sequent estimation of vibration levels on this shelf. The
configuration is clearly similar to that in the example dis-
cussed in Chapter 10, and the modeling techniques are thus
similar also. We could treat the skin, the stiffness, the
ring connector, the instrument shelf, and the interior
acoustic space as separate systems, each described by one or
more groups of similar modes. This is clearly a very com-
plicated model requiring a large amount of computation.
Experience suggests that a simpler model may be adequate to
describe the main features of the vibration.

We may note here the work of Manning [71 on the trans-
mission of vibration to a shroud-enclosed spacecraft. Some
features of the SEA model used by Manning could be applied
to the present system. For example, his theoretical pre-
dictions of the coupling loss factors from cylindrical shells
to ring stiffeners could be used. However, although
features of the geometry are similar, the scale of the
fixture studied by Manning is considerably larger than the
present fixture. Modal densities of components thus are con-
siderably reduced in the present system, so that the use of
multimodal subsystems in our SEA model for these components
may not be justified. Clearly then, a reasonable SEA model
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can be formed for any case only after some preliminary
estimation of such parameters as the modal densities of some
of the components of the fixture being studied.

We begin with a two subsystem model. Since the random
pressure on the vehicle skin generates mainly transverse
motion, the group of transverse modes of the skin itself
should describe the skin vibration. The second group of modes
that we choose represents the vibration of the instrument
shelf. Coupling between the two groups of modes is provided
by the ring connector. This two component system requires
the evaluation of a minimum number o. SEA paramete.s. Even so,
the evaluation of these parameters in this example tznn out
to be quite involved.

A more complicated model may be used if it appears to bz
necessary. We 7note, however, that an advantage of the SEA
approach is that groups of modes we may treat separately in
a more complicated model will often show up, for example, as
an additional dissipative mechanism in the simple model. This
added dissipation would be included implicitly in an experi-
mentally obtained value of the loss factor used in the
simpler model.

Our model has been chosen deliberately to be simpler than
the model used by Manning [7). This is so for a variety of
reasons. As pointed out above we expect that the main
features of the vibration can be explained on the basis of a
simple model. To a degree we are limited to this simple
model by the restricted amount of data available for the pre-
diction of coupling loss factors. We have already noted that
there are very few modes of vibration of the ring connector
between the shell and the shelf in the frequency range of
interest; we would not be justified in treating this ring as
a separate subsystem in our SEA model. Finally, since the
ring connector provides a fairly strong structural link with
the skin, we are justified in neglecting the transmission
of vibration from skin to shelf via an airborne path.

15.2 Modal Density

15.2.1 Modal Density of Vehicle Skin

The vehicle skin is treated as a truncated conical-shell
of uniform thickness h, semi-vertex angle , and slant
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length L as shown in Fig. 15.2. The shell has a maximum
radius al and a minimum radius a2 . The coordinates x and 6
describe the surface of the cone.

We follow an approximate description of the cone vibration.
We assume that a small section S of the cone with mean radius
a has the same vibration properties as a section c on a cylinder
of the same material, the same thickness h, and the same
radius a(x). In particular, we assume that for resonant
vibration at frequency w, the local wavenumbers (kx,ke) on
section S of the cone are the same as the corresponding
wavenumbers on the cylinder section C. (This is in the spirit
of the treatments of Refs. 25, 26).

For a given mode, the wavenumbers are given by

kI n/a(x), kx = E- f0 L'

We note that these wavenumbers must be functions of the co-
ordinate x. Also, if we write

as the wavenumber for resonant vibration at frequency w on
a flat plate of the same material and the same thickness as
the cone, resonant motion corresponding to tie local values
of the wavenumbers can only occur if

k -( x ) = n < k
k0 x6 a(x) p*

The corresponding local k. wavenumber is subsequently obtained
in this case from the frequency equation of a cylinder [3].
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a2  k2
wa = (ka) 2 (k2 + k 2 ) 2 + (15.1)
C9 , X k20

where a(x) represents the local radius of the cone.
Examination of this equation shows that for a given (m,n)
mode resonant at frequency w three types of solutions are
possible. The three cases are sketched in Fig. 15.2 (b).

Case I:

ko(x) < k everywhere on the cone. That is, for the
given number n, numbers m can be found such that
kx = m r/L satisfies Eq. (15.1). The corresponding
mode shape at resonance extends over the entire
length of the cone.

Case II:

k (x) < kD for xO < x < xk, and ks(x) k for xZ>x>xb.
o this case there are no solutions of Eq. (15.1) for

ialues of x < xk. Clearly xk is given by n/a(xZ) = kp.
The resonant motion of the corresponding mode is
restricted to values of x > xt, that is, to the larger
end of the cone.

Case III:

ko(x) > kp everywhere on the cone. No resonant
motion is possible for this case.

No simple analytic results exist for the modal density of a
cylindrical shell. Hence no simple analytic result can be ob-
tained fur the modal density of the cone by our technique of
matching cone sections to equivalent cylinder sections. Empiri-
cal curves for a cylinder are given in Fig. 15.3 (from Ref., 22).
For the cone, the modal density for resonant modes at a given
position can be found approximately by using the appropriate
value of the radius a(x) in the non-dimensional parameter

Vo = 27 foa(X) /c

ir. Fig. 15.3. The parameter f here is the center frequency

0
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of the band being considered. In keeping with the three cases
discussed above, we note that for a given frequency the local
modal density tends to increase towards the larger end of the
cone. Of course, at frequencies well above the ring frequency
associated with tjie radius of the smaller end of the cone all
the equivalent cylinders have the same modal density as a
flat plate of equal area. The modal density of the cone is then
the same as that of a flat plate of equal area and the modal
density becomes independent of frequency.

15.2.2 Modal Density of Instrument Shelf

The instrument shelf is a fairly stiff assembly. It has
been determined experimentally that there are nine resonant
modes below 2000 Hz. The modes are not uniformly spaced, and
their precise location in frequency is not known. We shall
discuss later some ways of overcoming this lack of data.

One approximate theoretical estimate may be obtained by
treating the instrument shelf as an equivalent flat plate.
This is the same as adding the modal densities of each flange
of the shelf structure. Suitable values would be zu area
A = 4 ft2 and Kck = 200 ft2/sec. This leads to a model
density n2 (w) = A/47rKck = 1/200w, giving, for example, 2.3
modes in the third octave band at 1000 Hz. Although it uses
reasonable parameter values, this estimate is somewhat high
when compared to the experimental values found at lower fre-
quencies. We shall, however, use this estimate in one of
the vibration prediction schemes discussed below. We expect
that the estimate will be more accurate at high frequencies.

The experimental estimate of the numbers of modes at low
frequencies (100 to 1000 Hz) suggests that some third octave
bands will contain resonant modes of the shelf, others will
not. A reasonable model of the shelf at low frequencies
would thus be a one degree of freedom system attached by mass-
lesd moment arms to the vehicle skin. This model should give
reasonable predictions on the shelf vibration at least in the
vehicle axial direction, assuming that the ring connector acts
as a rigid body. Clearly, this model is most applicable at
low frequencies. We shall discuss the parameter values involved
here in the next section.
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15.3 Coupling Loss Factor

The coupling loss factor required in the present SEA
model is that which describes energy transmission between
the two groups of modes describing the vehicle skin and the
instrument shelf subsystems.

Since the coupling loss factor is often the most difficult
SEA parameter to predict accurately we shall discuss its
evaluation in some detail. Two highly simplified models of
the instrument shelf lead to two theoretical predictions. In
addition, some of the data taken by Manning and others may
be interpreted in terms of these two models, thus giving two
experimental predictions. Finally, in later parts of our
discussion we shall show how the data may be used to predict
vibration levels on the shelf without explicitly evaluating
the coupling loss factor.

15.3.1 Approximate Theoretical Prediction #1 (high frequencies)

The instrument shelf is a fairly complicated assembly; a
detailed analysis does not seem feasible. However, as far as
the coupling loss factor is concerned, the essential features
of the vibration of the shelf may be obtained by treating the
shelf as an equivalent flat plate. A further simplification
is to treat the skin-shelf transmission as a simple plate-
plate transmission. This is certainly justifiable at higher
frequencies when wave motion on the cylinder is controlled
solely by the material bending stiffness.

The coupling loss factor may then be taken from Chapter 14
(see also Ref. 10):

2 L
'21 7 k2A2

where '21 represents the coupling loss f&ctor from shelf to
skin, L = 2ra is the joint length, k2 is the wavenumber
on the equivalent plate of area A? and y is a geometric
factor. Since the material and thickness of the skin and of
the equivalent plate are, at least, similar, we taken y = 8/27.
By substituting in suitable values
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[L = 21(l.2)ft., A2  4ft 2, KC£ = 200 ft2/sec]

we find

o4

r21 : - 2 f (15.2)

15.3.2. Experimental Prediction #1

15.3.2.1 Description of the Experiment

An evaluation of the coupling loss factor may be ob-
tained from the experimental data of Manning.
Because of the complexity of the structural properties of
the ring connector, an experimental measure of the coupling
loss factor certainly is warranted. The ideal experiment
woaild be conducted on the vehicle itself. This was not
fe&sible in the experiments by Manning. A model of the
instrument shelf mounted in a cylindrical rather than a
conical shell was used.

In a vibration experiment of this type, one of the
properties one would like to model accurately is the source
impedance of the vehicle shell. This impedance depends in
a complicated way on the geometric and material properties
of the shell. The cylindrical shell used by Manning had the
same surface density and bending wavespeed as the actual
vehicle skin, and thus provided a realistic test model.

The model used by Manning is shown in Fig. 15.4. The
steel shell has a diameter of 29 in. and thickness of 5/16 in.
The instrument shelf is attached to the cylindrical shell by
an L-shaped ring, a connection that is structurally similar
to that used in the actual vehicle.

The experimental structure was excited by two 50 pound
shakers located as shown in Fig. 15.4. Third octave bands
of noise covering the frequency range 50 Hz to 10 kHz were
used. No attempt was made to excite the fixture at the levels
predicted during actual flights since the goal in these tests
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was to obtain vibration levels on the instrument shelf
relative to those on the cylindrical shell.

Acceleration levels measured in one-third octave bands
were measured at a number of points on the fixture. Three
groups of measurement positions were used: on the instru-
ment shelf, on the shell at the point of connection to the
shelf, and in the reverberant field of the shell, that is,
away from the ends, the connector, and the shakers. All
levels were measured relative to a single reference accelera-
tion level measured at the ring connector. The data is shown
in Figs. 15.5, 15.6, and 15.7. Figs. 15.5 and 15.6 show
the variation of vibration level in the reverberant field of
the shell and on the ring connector, respectively. Fig. 15.7
shows the transmissibility from the test shell to various
points on the instrument shelf. The transmissibility gives
the acceleration level at a point on the shelf relative to
the average acceleration level in the reverberant field of
the test shell.

15.3.2.2 Determination of n12 From the Data (Model #1)

In this paragraph we discuss how estimates of the
coupling loss factor may be obtained from the vibration data
based on model #1, the equivalent plate model. As we shall
see, although the data is useful, it is insufficient for
an accurate prediction of the coupling loss factor without
some further assumptions. Educated guesses are necessary
for some parameters. The interpretation of the data based
on the equivalent plate model is expected to provide reason-
able estimates only at high frequencies.

We consider here a two component system, the skin and the
shelf, with only one system, the skin, being directly excited.
Eq. (14.3.6) applies to the relative total energies of each
system in this situation.

"12
E E ' , (15.3)2,tot l,tot I + 121

where 1 and 2 refer to the skin and to the shelf, respectively.
We have also the symmetry relation
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Nl012 = N2 2 1. (15.4)

In the tests discussed above the transmissibility was
expressed in terms of the average acceleration levels of the
skin and of the shelf. In terms of these levels, Eq. (15.3)
may be written

M2<a 2> N2  2
22 _ 2 21 (15.5)

Ml<a 2 > N1 2 + n21

or

N2M1 <a
2> -1

121 = 1 - 1) (15.6)N M <a2 >
1 2 2

Eq. 15.6 gives an estimate of n21 provided that thequantities on tae right hand side are known. Now, <aj>/<a >
has been measured, M1 and N1 are known quite accurately, and
M2 may be estimated with reasonable accuracy. We have seen
that N2 is not easy to estimate, and n2 was not measured.

The test data thus does not seem particularly useful for
determining the coupling loss factor. However, several com-
ments on this attempted evaluation can be made:

1. While n2l may not be directly evaluated in this
case, the data obtained on the transmissibility
may still be used in our SEA approach to predict
vibration levels on the actual instrument shelf.
We shall discuss this evaluation later.

2. This type of test, while on occasion the only pos-
sible way of obtaining a value of the coupling loss
factor, can be inherently inaccurate. We note in
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particular the case of very small n2 (N2<< n2).
In this case, equipartition of energy among the
modes of the shelf and the skin occurs. n21 does
not control the relative levels in this case, and
so, the response values are quite insensitive to
the value of n21"

3. The above comments notwithstanding, we may, with
suitable assumptions (sometimes guesses!) evaluate 921
if it proves necessary to do so. It is instructive
to do so here in order to compare the values obtained
with our theoretical predictions.

The following table gives some representative values of
the numbers of modes in third octave bands for the text
fixture skin, and for the equivalent plate representing the
shelf (see Paragraph 15.2.2).

TABLE 15.1

MODE COUNTS FOR SHELL AND SHELF STRUCTURES

1/3 Octave Band
Center Frequency N1 = nl A N = /N 2

Hz

125 .8 .3 2.6

250 2 .6 3

500 6 1.2 5

1,000 18 2.3 8

2,000 64 4.6 14

4,000 109 9.2 12

8,000 208 18.4 11

For the values chosen in our model we have M /M2 = 4. The
data from Ref. 1 provides values of <az>/<a2 . Since this

12
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ratio always corresponds to at least 10 dB in the frequency
range of interest, Eq. (15.6) may be approximated to

1 M2<a > (15.7)n21 n2  NM~
N M<a >2 1 1

or

10 log D21 " 10 log n2 + T + 10 log NI/N2 - 6 (15.8)

where T represents the transmissibility to be obtained
from Fig. 15.7.

A comparison of the predictions obtained from Eqs. (15.2)
and (15.8) is shown in Table 15.2.

TABLE 15.2

VALUES OF COUPLING LOSS FACTOR

1/ 3 Octave Band Eq. 15.2 Eq. 15.8
Hz 10 log n21 10 log n21/n2

125 - 7.5 - 11

250 - 9 - 19

500 - 10.5 - 23

1000 -12 - 27

2000 - 13.5 - 7

4000 - 15 - 5

8000 - 16.5 - 8
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For a relatively well damped shelf, a guess of n2 "' 0.1
would be realistic. Even with this large value, the two
estimates differ by up to 15 dB at frequencies below 2000 Hz.

Several factors contribute to this discrepancy. Per-
haps the most drastic assumption is that of the multi-modal
nature of the response of the instrument shelf in all bands.
This feature enters into both estimates. We note, however,
that at frequencies above 1000 Hz where there are indeed a
number of modes in each frequency band the agreement between
the two estimates (with n2 = 0.1) is reasonable. The
equivalent plate model may thus be appropriate in the 2, 4
and 8 kHz bands.

15.3.3 Alternate Prediction of n21

15.3.3.1 Theoretical Prediction #2 (low frequencies, 100
to 1000 Hz)

Our previous assumption of the multimodal nature of
the response of the instrument shelf proved to be unrealistic
at low frequencies, particularly for the frequency bands
where we know from experimental data that the shelf response
is not multimodal. A more realistic low frequency model is
as follows: In each frequency band of interest, we assume
that the shelf can be treated as a lumped parameter system
with one uegree of freedom, that is, as a single resonator.
Assume that the resonator is free to vibrate along the
axial direction of the vehicle, and is caused to vibrate
by moment arms attached to the skin of the vehicle. A
diagram of this model for the test fixture in Fig. 15.4 is
shown in Fig. 15.8.

This model clearly predicts motion of the shelf in
the axial direction only. Now, from the data of Manning
we may note the following: at lower and middle frequencies,
the reverberant field acceleration level of the cylinder is
typically 20 dB higher than the average level at the ring
connector, showing that the ring has a considerable
stiffening effect as far as transverse motion of the shell
is concerned. We are thus perhaps justified in considering
only the moment transmitted by the L-shaped ring connector.
We may subsequently estimate the acceleration levels in
the cross-sectional plane by equating them to those at the
ring connector.
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This is an overestimate, however, as one can see from
paragraph 15.3.3.3.

Because of the axial symmetry of our model, we may treat
the shell as a beam of thickness h and width 2wa, acted on
by a concentrated moment. Fig. 15.8a shows a schematic
drawing of the model. We assume that a value of n21 can be
obtained by considering the power input to an infinite beam
when the instrument shelf is excited by a force F. From
Fig. 15.8b we see that the power supplied to the undamped
resonator representing the shelf is all transferred to the
beam, so that power balance requires that

Rin ="'21 E2 (15.9)

where E2 tt is the total energy of the oscillator (shelf).
The input impedance for the force F is

SiM 2 + iE + Zbeam
Ztot = 2 + k2a2

where

Zbeam = 2E .1 k3 (l-i)

is the point input impedance for an infinite beam (Section II,
see also Ref. 4Q). It follows from equation 15.9 that

n2 =R (Z )/WM

21 =  e tot) 2
3

M K
M1 1

21 M2 M --- a
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For the values of the parameters used by Manning, this result
predicts a value for the coupling loss factor of

3

21 20 f-2 (15.10)

and hence

3

"2  20 f- (n1 Ai) (15.11)

where (n Lw) is the number of resonant skin modes in the
frequenc' band.

15.3.3.2 Experimental Prediction #2

The vibration data can also be interpreted in terms
of this second model. We merely replace equation 15.6 by the
similar equation

/ M<a2:,-
n 2 1 =n 2  - 1 (15.12)

n 1 M2 <a 2

where <a2> now refers to only the axial acceleration of the
shelf.

We note that if an approximation similar to that leading
to equation (15.8) is made, the two models while predicting
different values of n2 for a given frequency band predict
the same value of n12 for that band.

15.3.3.3 Transverse Vibration of Shelf for Modal #2

Our low frequency model predicts only vibration in the
axial direction. It was suggested above that an overestimate
could be obtained by equating the shelf vibration levels in the
direction perpendicular to the vehicle axis to the vibration
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levels on the skin at the ring connector.

Values of the vibration level at the ring connector
can be obtained by allowing the mass in Fig. 15.8(b) to move
transversely. For only transverse motion we find the
coupling loss factor (by the same method as in paragraph 15.3.3 .2
to be

12
n21 ' 4 f (15.13)

15.3.3.4 Comparison of Coupling Loss Factor Predictions

The theoretical and experimental predictions of nl2
are compared in Fig. 15.9. We have estimated possible values
of the shelf loss factor n as shown. The experimental
predictions are based on t~e chosen values of n2 (the data
available in fact predicts only (10 lognl 2/n2).

We have used extremely simple models for our theoretical
predictions. Nevertheless, the agreement between theory and
experiment is fair. In particular, the difference in the low
and high frequency behaviour is readily seen.

This fairly successful use of crude models of complicated
structures demonstrates the strength of SEA. Although, for
example, our lumped-mass-on-a-beam model seems very different
from the actual reentry vehicle, the two systems are
sufficiently similar that useful results can be obtained on a
statistical basis by treating both systems as two members of
the same ensemble of similar systems. We require merely that
such gross parameters as, for example, the total mass be
preserved.

15.3.3.5 Summary of Couping Loss Factor Values

It remains for us to choose appropriate values of n12
and 12 for each frequency range from among the many
predictions just discussed. Fig. 15.9 indicates that there
is a change in the apparent behavior at low and high
frequencies. We therefore propose using the low frequency
model for frequencies at and below 1000 Hz, and the high
frequencies at and above 2000 Hz.
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If purely theoretical predictions are required, then
n12 and n21 are given as follows:

f < 1000Hz:
0-

3

=20 f-1 (15.10)

21

n12 - 1 '1 (15.14)

f > 2000Hz:
0-

=2 2 f- (15.2)2 1

N1

12 2 
n2 l (15.15)

The change-over frequency point has been chosen in fact from
comparisons with experiments. However, a theoretical basis
may be given for this changeover if we say that the high
frequency model applies when there are more than two resonant
modes of the shelf in a third-octave band.

Because of the complexity of the fixture, we expect our
experimental predictions to be more accurate than the purely
theoretical predictions. It follows that the best approach
is to use values of 10 log (nl2/n2) obtained from Fig. 15.8 with
corresponding values of 10 log(n 21/n2) obtained by using
Eqs. (15.14) and (15.15) in the appropriate frequency range.
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15.4 Prediction of the Vehicle Skin Vibration Levels.

In this paragraph we discuss the response of a conical
shell to. a turbulent-boundary-laver pressure field. The
prediction is taken from Manning's work. For completeness, and
since Manning's work is not available, we have included below
some results of his work. This work together with the mean
square pressure levels shown in Fig. 15.11 can be used to
predict the actual acceleration levels of the vehicle shell.

15.4.1 Response of a Conical Shell to a Turbulent Boundary
Layer (TBL) Pressure Field

15.4.1.1 General Outline of the Calculation

Fig. 15.10a indicates an important feature of a TBL
pressure field. At a frequency w, the fluctuating wall
pressure possesses wave number components k. that are very
nearly ec i to w/Uc, Uc being the mean convection velocity
of the p:e,;sure field. At freqjuency j, a section S of the
cone at i-adius a [Fig. 15.10b] accepts power from the pressure
field, if there is a local vibration pattern on section S
that is resonant at frequency w and also has a local wave-
number component k = w/Uc . Such a wavenumber vector at
resonance is shown by a heavy dot in Fig. 15.10a. (If the
frequency w is lower than the local ring frequency cz/a
for section S, two such wavenumber vectors may be possible.

From the known results for a cylindrical shell, we can
calculate this wavenumber vector, as well as the associated
power input from the pressure field to section S(see Ref. 42).
Also, from the calculated value fo the wavenumber component k
corresponding to the heavy dot in Fig, 15.10a and from the
known radius a at section S, we determine the number n
of the cone mode to wbich this particular resonant motion over
the section S belongs

n = k0a (15.16)
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The spatial extent of this parent mode is also easily

determined. If kea/k a2<l, Case I of paragraph 15.2.3.1
applies and the paren? mode extends over the entire surface
of the cone. Otherwise, Case II applies. The non-zero
region of the parent mode for Case II is sketched in Fig. 15.10(a).
The radius a at the boundary AB of this region is determined
from the congitions:

ka
= 1. 

(15.17)k a
p0

Now we assume that the power transmitted by the pressure
field to the section S is retained entirely by the parent
mode and is manifested as uniform coherent vibration of this
mode.

This procedure then enables us to estimate the average
mean-squared acceleration (in any given ftequency band), over
the extent of the parent mode, that results from the inter-
action between the TBL pressure field and the section S.
By making the assumption that there is negligible coherence
between vibration of different modes, we obtain the total
acceleration-level at a particular location on the cone
surface (in a frequency band) by merely summing up con-
tributions from all the sections S of the conical shell.

The cone vibration would be contributed partly by modes
that exclude the smaller end of the cone from their vibration
patterns. The larger end of the cone, however, is always
included. In other words, the power accepted by the various
cone sections from the TBL pressure field is distributed in a
preferential direction: namely, towards the larger end of the
cone. Consequently, the vibration levels on the cone surface
are expected to increase from the smaller to the larger end
of the cone.

15.4.1.2 Response Estimate for the Conical Shell

15.4.1.2.1 Structural Model

The conical shell is modeled as an isotropic conical

169



shell 110 in. long, with maximum and minimum diameters of 6.4
and 39 in. The surface mass density is taken to be 15 lb/ft 2.
Based on the experimentally determined values of the bending
wave speeds in the two layered and multi-layered sample bars,
we take the quantity KcX to be 90 ft2/sec. The longitudinal
wave speed ct by itself enters in the description of the
extensional or membrane stress-controlled vibration. We assume
ct to be 10,000 ft/sec. The chosen values of K and cZ are then
consistent for a shell thickness of about 3/8 in. The structural
loss factor nI is taken to have a value of 0.025 at all fre-
quencies. This estimate is based on the value of nI deduced at
2000 Hz from shock transmission studies.

15.4.1.2.2 Flow Model

The free stream velocity U of the flow is taken to be
21,000 ft/sec. The mean convection velocity Uc of the TBL
pressure field is taken as 0.6 U. The dynamic head q is
50 atm, and the root-mean-square pressure fluctuation Ph on
the cone surface is 0.02 q. The boundary layer displacement
thickness is taken to increase linearly from the smaller end to
the larger end of the cone, with a mean value of 0.2 in. This
choice is equivalent to taking the displacement thickness
6" = 0.0026x, x being the distance along the generator from
the cone vortex. The frequency spectrum of the fluctuating
pressure at any location is assumed to scale with the Strouhal
numbur f6*/U where Um is the free stream flow speed. The
pressure spectrum at the mid-section of the cone is shown in
Fig. 15.11 . The coherence is expressed in a compact way
by the wavenumber spectrum 43 (ke) in the circumferential
direction. The following form is chosen for this spectrum at
frequency w

= (k0  2- (1 + (kL 3 ))y (15.18)

with

L 3 = 2 6*(l + (2w6*) )-
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15.4.1.2.3 Results

The calculation procedure of paragraph 15.4.1.1 was
carried out with the division of the conical shell into seven
sections of equal axial length. The acceleration-response
spectra at the two extreme sections and at the middle section
are shown in Fig. 15.12. Mass-law response is also indicated.
These spectra are normalized with respect to the pressure
spectrum at the midsection as also shown in Fig. 15.11. The
acceleration levels in all frequency bands are seen to increase
from the smaller to the larger end. From Fig. 15.11 the
pressure spectrum increases monotonically with frequency in
the frequency range indicated.

Since the pressure spectrum is assumed to scale on the
local Strouhal number f 6*/tj and since the thickness S*
increases from the smaller to the larger end of the cone,
the pressure levels increase in any frequency band below the
spectral maximum. This behavior tends to accentuate the dif-
ference in the acceleration levels on the different sections of
the cone. The essential mechanism, however, still is the
restricted extent of the vibration patterns of the cone modes.

An explanation of the peaks in acceleration spectra for
the mid-section and the smaller end shown in Fig. 15.12 is of
interest. Consider first the acceleration response of a
cylindrical shell that is excited by a TBL pressure field.
Below the cylinder ring frequency ck/2fra where a is the
cylinder radius, a significant portion of vibration is con-
tributed by the membrane-stress-controlled modes. We denote
this type of vibration by MV. This MV contributions is maxi-
mum near the ring frequency and drops sharply at higher
frequencies. This is because membrane stresses cease to be
effective above the ring frequency.

For the cone response under consideration, the cone
section near the larger end has a local ring frequency of
about 1000 Hz. The power input from the TBL pressure field
to the MV of this section is maximum at its ring frequency.
Also, the MV is associated with relatively small values of the
modal number n. Furthermore, the modes involving the MV extend
over the entire surface of the cone. Thus, the maximum power
input at 1000 Hz to the MV near the larger end of the cone is
manifested as vibration on the entire cone surface. Let us
recall that the pressure levels in all frequency bands are
maximum near the large end of the cone. Hence, this power
input forms a significant portion of the total power input
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to the cone around 1000 Hz. Since the vibration level in-
creases from the smaller to the larger end of the cone, the
presence or absence of the power input to the MV near the
larger end causes the greatest relative change in the

vibration level at the smaller end and the minimum relative
change in the level at the larger end. The sharpness of
the peaks in acceleration spectra at 1000 Hz depends on the
magnitude of the fractionel change in the response. Fig.
5.13 presents the response estimates based on two alternate
calculation procedures that involves assumptions that are
relatively less realistic. For the acceleration spectrum
marked A, the structural and the flow models are the same
as those for the results of Fig. 5.12; however, the
assumption of paragraph 15.4.1.1 (that each mode retains
all the power fed into it by the TBL pressure field)
is now replaced with the more naive assumption that the total
power input to the structure in any frequency band is dis-
tributed uniformly over the structural surface, yielding a
uniform acceleration level everywhere on the structure. A
third procedure could be based on the assumption that the
modes with resonance frequencies within a particular fre-
quency band sha-e the power (fed into them by the pressure
field in the same frequency band) among each other in such
a way that the time-averaged energy of each mode is the
same. While this assumption is more realistic, it is not
used here because it would entail complicated calculations.
It is interesting to note that the above three assumptions
yield identical estimates of vibration for a rectangular
flat plate or for a cylinder shell, whereas they yield
three distinct estimate for a conical shell.rI

Acceleration spectrum B in Fig. 15.13 pertains to the
estimated response of a cylindrical shell that has the thick-
ness and the material properties of the structural
model and a radius which is the average of the radii of the
two ends, (a1 + a2)/2. The TBL pressure field is taken to
have the same properties everywhere on the cylinder as those
assumed for the midsection of the structural model.
This estimate B is the simplest to obtain and is seen to
lie within the range of the acceleration spectra of
Fig. 15.12. Therefore, the response of an equivalent
cylinder seems to be useful in yielding an approximate
first-order estimate for the response of a conical shell.
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15.4.2 Empirical Prediction of Acceleration Levels

A commonly used empirical prediction scheme is that of
Franken [41]. This approach is not really valid here, how-
ever, for two reasons. First, although vehicle diameter is
included in the Franken prediction scheme, the diameter of
the reentry vehicle is so very much smaller than the diameters
of the vehicles on which Franken took his data that doubts
must be raised about the validity of the extrapolation.
Second, Franken's measurements were taken with acoustic
rather than TBL excitation. The predicted relative
acceleration levels based on Franken's scheme are shown in
Fig. 15.14. In view of the above caveats, the agreement with
the prediction of Fig. 15.13 is surprisingly reasonable at
high frequencies.

15.4.3 Power Input to the Shell

In SEA vibration predictions it is sometimes more useful
to consider the basic input parameter for the problem to be
the power input to part cf the system rather than the ac.-
celeration level of part of the system. The use of one or
the other of these quantities is discussed in the next para-
graphs.

The power input to the shell has been computer in the
approach described in paragraph 15.4.1, although specific
results are not given. It may arise, however, that acceleration
levels are predicted directly, as in the Franken approach. The
total power input to the shell can be found from the acceleration
levels by using the relationship

H =. E- <a?> (15.19)in "l l,tot W 1

In this equation nI is the effective loss factor of the
structure. The other parameter values are M= 15 lbs/ft 2

and nl = 0.025. Values of the input power if required
may thus be computed directly from the predicted values of the
mean square acceleration <a >.

17
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15.5 Vibration Levels of the Instrument Shelf

We are now in a position to use our SBA model of the
reentry vehicle to predict the vibration levels on
the instrument snelf. The various parameters required for
the SEA model have been discussed above. We shall discuss
below three ways of using these parameters to predict the
vibration levels.

Our goal in the present problem is to predict vibration
levels of the instrument shelf within the reentry vehicle when
we are given information about the excitation field acting
on the skin of the vehicle. Our approach is to predict first
either the vibration levels of the skin itself or to predict
the power input of the skin from the turbulent boundary layer.
Implicit in both these predictions is the neglect of the
interior structure of the vehicle on the skin vibration.
This effect shows up in two ways: First, as an additional
mass and stiffness which may alter the modal resonance fre-
quencies, and second, as an additional path for the loss of
energy. The latter effect can be viewed either as an increase
in loss factor as far as the skin is concerned, or as a
coupling loss factor as far as the relative vibration levels
of the internal structure and the skin are concerned.

The power input in a frequency band co a multimodal
structure depends on the total mass o the structure and
(if we consider only resonant response) on the number of
resonant modes in the band. We remembe;: that modal
densities are additive, and for shell-like structures at
high frequencies tend to be proportional to the surface
of the structure. The addition, say, of a stiffener to a
shell thus does not greatly affect the modal density. It
follows that the to-.al power input to the structure also
does not change very much.

On the other hand, the stiffener may be such that it
provides energy flow path to other parts of the system.
Thus, effective loss factor of the part being considered
may increase. As the total energy of the system in a
frequency band is inversely proportional to the loss factor
(for constant input power) the vibration levels on the
structure would decrease. Very often, the coupling between
structures is weak. The coupling now has a negligible
effect on the vibration of the directly excited structure;
both power input and vibration levels remain approximately
unchanged.

174



15.5.1 Prediction Based on Skin Acceleration Level

In this Section, we give SEA predictions on the instru-

ment shelf vibration levels based on:

1. prediction of the acceleration levels of the skin;

2. prediction of the power input to the skin, and

3. direct use of the experimental data.

If we assume that the loss factor used by Manning is
the effective loss factor of the vehicle skin and internal
structure, then the values of the skin vibration levels pre-
dicted in the reference are the appropriate levels to use. In
terms of these predictions the instrument shelf vibration level
is given by

= M1  <a2> n12 (15.20)2a >=2 1 2 + n21

The subscripts 1 and 2 refer to the vehicle skin and
shelf, respectively. The appropriate values of n12 and n2l
can be used as discussed in paragraph 15.3. Of course, when
equations such as (15.14) and (15.15) are used, the para-
meter nl now refers to the modal density of the conical shell
(paragraph 15.2). Values of the acceleration level <al> are
obtained from Figs. 15.11 and 15.13. Typical results are
discussed in paragraph 15.5.4.

15.5.2 Prediction Based on Input Power

The input power Hin for a turbulent boundary layer can be
found from Section I of this report and from Ref. 37. We then
have

Hin = Eltot + bnl 12 El tot - wi21E2 ,tot (15.21)
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and

12,tot = ,tot 2 12 (15.22)

From these equations we find

E <a2> = + 2112 (15.23)l,tot 2 1 in(W 2 + n2(

Typical values of the parameters have been given.

A comparison of Eq. (15.23) and (15.19) shows the effect
that the internal structure has on the skin vibration. We
see immediately that if the coupling loss factors are small,
Eqs. (15.23) and (15.19) give approximately the same result.
When this is so, then the prediction of paragraphs 15.6.1 and
15.6.2 will be the same. We emphasize, however, that when
the coupling is strong, Eqs. (15.23) and (15.22) should be
used to predict the vibration levels.

As a final comment on the difference between the two
approaches just outlined we note the following: If decay
measurements are taken on the skin alone a value of 1l is ob-
tained. If the internal structure is then put in place and
further decay measurements taken, an effective loss factor for
the skin of'

+ n 21 (15.24)

is obtained. The correct approach thus clearly depends on
the experimental configuration used.

15.5.3 Prediction from the Experimental Data

We have discussed methods of obtaining values of the
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coupling loss factors from Nanning's experimental data at
some length, even though we noted that these values were not
required explicitly as direct vibration predictions are possible.
The Manning experiments were performed on a fixture as similar
as possible to the actual vehicle. When estimating n21, the
coupling loss factor from shelf to skin, we have seen that the
skin can be treated approximately as an infinite structure. As
discussed in earlier parts of this report, the use of the
infinite structure approximation is a common one in obtaining
some SEA parameters. It follows that (to this approximation)
the value of n21 is the same for the test fixture as for the
actual vehicle. On the other hand, values of n will be
different since the modal density of the test fAlture and the
actual vehicle are different.

If we suppose that the skin acceleration levels on the
actual vehicle have been predicted, we can then make an
estimate of the shelf vibration levels. Two equations such as
(15.22) can be written, one describing the test fixture, and
one describing the actual vehicle. Values of D2 and n 21 are
the same for each equation. It follows by simple substitution

that

E2,tot .nl E2,tot
Enl'tot 2 E ltot

where the variables with a tilde refer to the test fixture,
and those with no tilde to the actual vehicle. The equation
can be written

<a2> nM <a2 >
2 = ~ -11 2 (15.25)

<a2 >  nIM1  <aZ>
1 1M1  1~2

Thus values of the shelf acceleration <a2> relative to
the predicted vehicle skin acceleration level <a2> can
be found directly in terms of the transmissibility ratio
<a2> /<a2> found in the experiment. The parameters nland M
2 1
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and n1 and MI are the modal density and total mass of the skin
in the vehicle, and in the test fixture, respectively.
Typical values are discussed below.

15.5.4 Results

Some predictions for the mean square acceleration level on
the instrument shelf in the vehicle are presented in this
section. We note first that as the coupling loss factors are
small, predictions based on paragraphs 15.5.1 and 15.5.2 will
be the same. A number of different predictions are possible
since in some cases a number of different values have been
predicted for each parameter. Some representative predictions
are shown in Fig. 15.15.

Curve A of Fig. 15.15 is obtained from purely theoretical
considerations. Values of the coupling loss faciirs used for
the low and high frequency models are summarized in paragraph
15.3.3.5. We have used the equivalent cylinder prediction of
the skin acceleration level with ni = 0.025 as shown in
Fig. 15.13. The estimated values of n are shown in Fig. 15.9.
This curve would be obtained by the prediction schemes of both
paragraphs 15.5.1 and 15.5.2 above.

Curve B of Fig. 15.15 shows the prediction obtained
directly from the data by the method described in paragraph
15.5.3.

15.5.5 Other Vibration Parameters

Fig. 15.15 shows predictions of the acceleration levels
of the upper instrument shelf of the vehicle. Other
vibration parameters can be obtained directly by the methods
of Chapter 7.

15.6 Confidence Limits

The predictions discussed so far are mean values of the
vibration parameters, the mean being obtained from an ensemble
of similar systems. As discussed in earlier parts of this
report, it is of interest to obtain measures of the deviation
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of a realized response from the mean. This can be done in
terms of the standard deviation from the mean square response.

The four major effects producing a variance in response
have been discussed in paragraph 4.2 of Part I. We emphasize
that all four effects are features of the SEA model we have
chosen, and not the actual system under study. Thus, in the
present problem the confidence estimates give no indication
of how accurately our SEA model describes the vibration of the
actual vehicle. What the confidence limits do tell us is
the range of vibration of the response we might expect to
measure if a physical replica of our SEA model were constructed.
However, if data taken on the actual vehicle falls within the
predicted high confidence (say 80%) limits, this is an
indication that our SEA modeling is, at least, adequate.

We shall restrict attention here to "bracketting"
confidence limits for broad band excitation. We have pre-
dicted above the mean square acceleration levels in third
octave bands of the upper instrument shelf, <a2>. We first
estimate the variance in this response. Eq. (1.2.13) of Part I
gives the ratio of variance to mean square response as

2

G2 1 p> 2  < p4 >2= [n 1n (l+w"2) Aw]- -2 1 2

2 1~2 > < 3 2

The spatial response factors corresponding to our low and high
frequency models are as follows:

< 4>
1 9/4 all f

< 2>2 0

<4> 3/2 f < 1000 Hz
2~0 -

<. 2 >2  9/4 f > 2000 Hz
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The appropriate values of N1 + N have been discussed
above (for example n2Aw=l for frequencies less than 1000 Hz).
Values of the variance are shown in Fig. 15.16.

Confidence limits based on the variance can be obtained
from Fig. 4.9 of Part I. The 80% limits for the theoretical
prediction given in Fig. 15.15 are shown in Fig. 15.17. The
limits tend to bracket the measured values except in the
highest frequency band.
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